એક માણસ તેના ચાર મિત્રોને પત્ર લખે છે. તે દરેકને સૂચના આપે છે કે આ પત્ર તેમના અન્ય ચાર મિત્રોને મોકલે અને તેમને પણ આ જ પ્રમાણેની સાંકળ આગળ વધારવાની છે. માની લઈએ કે આ સાંકળ તૂટતી નથી અને દરેક પત્ર મોકલવાનો ખર્ચ $50$ પૈસા આવે છે, તો $8$ મી વખત પત્ર મોકલવાનો ખર્ચ શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The numbers of letters mailed forms a $G.P.:$ $4,4^{2}, \ldots .4^{8}$

First term $=4$

Common ratio $=4$

Number of terms $=8$

It is known that the sum of n terms of a $G.P.$ is given by

$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$

$\therefore S_{8}=\frac{4\left(4^{8}-1\right)}{4-1}$

$=\frac{4(65536-1)}{3}=\frac{4(65535)}{3}=4(21845)=87380$

It is given that the cost to mail one letter is $50$ paisa.

$\therefore $ Cost of mailing $87380$ letters $= Rs .87380 \times \frac{50}{100}= Rs .43690$

Thus, the amount spent when $8^{\text {th }}$ set of letter is mailed is $Rs.$ $43690$ .

Similar Questions

એક સમગુણોત્તર શ્રેણીનાં બધાં પદ ધન છે. તેનું દરેક પદ, તે પદ પછીનાં બે પદના સરવાળા જેટલું હોય, તો આ શ્રેણીનો સામાન્ય ગુણોત્તર.... હશે.

સમગુણોત્તર શ્રેણીની પ્રથમ $3$ પદોનો સરવાળો $\frac{39}{10}$ છે અને તેમનો ગુણાકાર $1$ છે, તો સામાન્ય ગુણોત્તર અને તે પદો શોધો. 

જો $a, b, c$, અને $ p$ ભિન્ન વાસ્તવિક સંખ્યાઓ હોય અને $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)\, \leq \,0,$ તો બતાવો કે $a, b, c$ અને $d$ સમગુણોત્તર શ્રેણીમાં છે.

એક સમગુણોત્તર શ્રેણીના પ્રથમ ત્રણ પદોનો સરવાળો $S$ હોય અને તેનો ગુણાકાર $27$ થાય તો તે બધા માટે $S$ ....... માં આવેલ છે 

  • [JEE MAIN 2020]

જો $a $ અને $b$ વચ્ચેના સમગુણોત્તર મધ્યક $H$ હોય, તો $\frac{1}{{H\, - \,a}}\, + \,\frac{1}{{H - b}}$ નું મૂલ્ય કેટલું થાય ?