જો $\text{a}$ અને $\text{b}$ નો સમાંતર મધ્યક $\frac{{{a}^{n+1}}+{{b}^{n+1}}}{{{a}^{n}}\,+\,{{b}^{n}}}$ હોય,તો $\,\text{n =}.......$
$1$
$-1$
$0$
આપેલ પૈકી એક પણ નહિ
જો સમાંતર શ્રેણીનું $n$ મું પદ $\frac{(2n + 1)}{3}$ હોય,તો તેના $19 $ પદોનો સરવાળો કેટલો થાય ?
વિધાન- I : બે સમાંતર શ્રેણીના $n$ પદોનો સરવાળો ગુણોત્તર $(7n + 1) : (4n + 17)$ હોય, તો તેમના $n$ માં પદોનો ગુણાકાર $7 : 4$ થાય.વિધાન- II : જો $S_n = an^2 + bn + c,$ હોય, તો $T_n = S_n - S_{n-1}$ થાય.
જો સમાંતર શ્રેણીનાં $p^{\text {th }}, q^{\text {th }}$ અને $r^{\text {th }}$ માં પદો અનુક્રમે $a, b, c$ હોય તો બતાવો કે, $(q-r) a+(r-p) b+(p-q) c=0$
સમાંતર શ્રેણીના પ્રથમ $p$ પદોનો સરવાળો, પ્રથમ $q$ પદોના સરવાળા જેટલો થાય છે, તો પ્રથમ $(p+q)$ પદોનો સરવાળો શોધો.
જો $a _{1}, a _{2}, a _{3} \ldots$ અને $b _{1}, b _{2}, b _{3} \ldots$ એ સમાંતર શ્રેણી મા હોય તથા $a_{1}=2, a_{10}=3, a_{1} b_{1}=1=a_{10} b_{10}$ હોય,તો $a_{4} b_{4}=\dots$