સમાંતર શ્રેણીનું $p$ મું પદ $q$ અને $q$ મું પદ $p$ હોય, તો તેનું $r$ મું પદ...... થશે.
$p + q + r$
$p + q - r$
$p + r - q$
$p - q - r$
એક સમાંતર શ્રેણીનાં પ્રથમ $m$ અને $n$ પદોના સરવાળાના ગુણોત્તર $m^{2}: n^{2}$ છે. સાબિત કરો કે $m$ માં તથા $n$ માં પદોનો ગુણોત્તર $(2 m-1):(2 n-1)$ થાય.
જો $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$ $({x_i} \ne \,0\, $ બધા $\,i\, = 1,2,....,n)$ એ સમાંતર શ્રેણીમાં હોય કે જ્યાં $x_1 = 4$ અને $x_{21} = 20$ અને $x_n > 50$ જ્યાં $n$ એ ન્યૂનતમ ધન પૂર્ણાંક સંખ્યા છે તો $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $ ની કિમત મેળવો
જો ચતુર્ભૂજના ચાર ખૂણાઓ સમાંતર શ્રેણીમાં હોય અને તેમનો સામાન્ય તફાવત $10°$ હોય તો ચર્તૂભુજના ખૂણાનું માપ શું હોય?
જો પહેલા $n$ યુગ્મ પ્રાકૃતિક સંખ્યાનો સરવાળો, એ પહેલા $n$ અયુગ્મ પ્રાકૃતિક સંખ્યાઓનાં સરવાળાના $k$ ગણા બરાબર હોય તો, $k = ........$
ધારોકે અંકો $a,b,c$ સમાંતર શ્રેણીમાં છે.આ ત્રણેય અંકોનો ત્રણ વાર ઉપયોગ કરીને $9-$અંકો વાળી એવી સંખ્યા બનાવવામાં આવે છે કે જેથી ત્રણ ક્રમિક અંકો ઓછામાં ઓછા એક વાર સમાંતર શ્રેણીમાં હોય.આ પ્રકારની કેટલી સંખ્યાઓ બનાવી શકાય છે?