સમગુણોત્તર શ્રેણીના કેટલાક પદોનો સરવાળો $728$ છે, જો સામાન્ય ગુણોત્તર $3$ હોય અને છેલ્લું પદ $486$ તો શ્રેણીનું પહેલું પદ શું હોય?
$2$
$1$
$3$
$4$
$a$ અને $b$ વચ્ચેના $n$ સમાંતર મધ્યકોનો સરવાળો કેટલો થાય ?
સમાંતર શ્રેણી $a_1, a_2, a_3, ……$ ના પ્રથમ $n$ પદોનો સરવાળો $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A$ છે. જ્યાં $A$ અચળ છે જો $d$ સમાંતર શ્રેણીનો સામાન્ય તફાવત હોય તો $(d,a_{50})$ ની કિમત મેળવો.
$x \geqslant 0$ માટે $4^{1+x}+4^{1-x}, \frac{\mathrm{K}}{2}, 16^x+16^{-x}$ એ એક સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદો હોય, તો $\mathrm{K}$ નું ન્યૂનતમ મૂલ્ય ........... છે.
જો પહેલા $n$ યુગ્મ પ્રાકૃતિક સંખ્યાનો સરવાળો, એ પહેલા $n$ અયુગ્મ પ્રાકૃતિક સંખ્યાઓનાં સરવાળાના $k$ ગણા બરાબર હોય તો, $k = ........$
અહી $a$, $b$ એ બે શૂન્યતર વાસ્તવિક સંખ્યા છે . જો $p$ અને $r$ એ સમીકરણ $x ^{2}-8 ax +2 a =0$ ના બીજ છે અને $q$ અને $s$ એ સમીકરણ $x^{2}+12 b x+6 b$ $=0$ ના બીજ છે કે જેથી $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ એ સમાંતર શ્રેણીમાં છે તો $a ^{-1}- b ^{-1}$ ની કિમંત $......$ થાય.