સમાંતર શ્રેણી $b_{1}, b_{2}, \ldots,$ $b_{ m }$ નો સામાન્ય તફાવત એ સમાંતર શ્રેણી $a _{1}, a _{2}, \ldots, a _{ n }$ ના સામાન્ય તફાવત કરતાં $2$ વધારે છે જો $a _{40}=-159, a _{100}=-399$ અને $b _{100}= a _{70},$ હોય તો $b _{1}$ ની કિમત શોધો.
$-127$
$-81$
$81$
$127$
જો $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ સમાંતર શ્નેણીમા હોય તો $x$ ની કિંમત મેળવો .
જો $a, b, c $ સમાંતર શ્રેણીમાં હોય, તો $(a + 2b - c) . (2b + c - a)(a + 2b + c) = ….$
જો એક સમાંતર શ્રેણીનું પ્રથમ પદ $3$ અને તેના પ્રથમ $25$ પદોનો સરવાળો તે પછીના બીજા $15$ પદોનો સરવાળા જેટલો થાય તો સમાંતર શ્રેણીનો સામાન્ય તફાવત મેળવો
જો $a, b$ અને $c$ સમાંતર શ્રેણીમાં હોય, તો $2^{ax + 1}, 2^{bx + 1},$ અને $2^{cx + 1} , x \neq 0$ એ.....
સમાંતર શ્રેણીનું $r$ મું પદ $Tr$ છે. તેનું પ્રથમ પદ $a$ અને સામાન્ય તફાવત $d$ છે. જો કેટલાક ધન પૂર્ણાકો $m, n, m \neq n,$ માટે $T_m = 1/n$ અને $T_n = 1/m,$ હોય તો $a - d = …….$