$a_1$, $a_2$, $a_3$, ......., $a_{100}$ સમાંતર શ્રેણીમાં છે. જ્યાં $a_1 = 3$ અને ${S_p}\, = \,\sum\limits_{i\, = \,1}^p {{a_i},\,1\,\, \le \,\,p\,\, \le \,\,100.} $ છે. કોઈ પણ પૂર્ણાક $n$ માટે $m = 5n$ લો. જો $S_m/S_n$ એ $n$ ઉપર આધારીત ન હોય તો $a_2= ......$

  • A

    $3$

  • B

    $9$

  • C

    $9$ અથવા $3$

  • D

    આપેલ પૈકી એક પણ નહિ

Similar Questions

ધારો કે $x_1, x_2 \ldots, x_{100}$ સમાંતર શ્રેણીમાં છે, જ્યાં $x_1=2$ અને તેઓનો મધ્યક $200$ છે.જો $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$ હોય,તો $y_1, y_2, \ldots, y_{100}$ નો મધ્યક

$..........$ છે.

  • [JEE MAIN 2023]

શ્રેણી $3 +7 + 1 1 + 15+ ... ......$અને $1 +6+ 11 + 16+ ......$ના પ્રથમ $20$ સામાન્ય પદોનો સરવાળો મેળવો. 

  • [JEE MAIN 2014]

જો સમાંતર શ્રેણી નું $p$ મું પદ $q $અને $q $મું પદ $p$ હોય તો તેનું $n$ મું પદ ......છે.

જો ${\log _5}2,\,{\log _5}({2^x} - 3)$ અને ${\log _5}(\frac{{17}}{2} + {2^{x - 1}})$ એ સમાંતર શ્રેણી માં હોય તો $x$ ની કિમત મેળવો 

જો $a, b, c,d$ સમગુણોત્તર શ્રેણીમાં હોય, તો સાબિત કરો કે $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ સમગુણોત્તર શ્રેણીમાં છે.