જો $a_1, a_2, a_3, …….$ એ સમાંતર શ્રેણીમાં છે કે જેથી $a_1 + a_7 + a_{16} = 40$, હોય તો પ્રથમ $15$ પદનો સરવાળો મેળવો.
$200$
$280$
$150$
$120$
વિધાન- I : બે સમાંતર શ્રેણીના $n$ પદોનો સરવાળો ગુણોત્તર $(7n + 1) : (4n + 17)$ હોય, તો તેમના $n$ માં પદોનો ગુણાકાર $7 : 4$ થાય.વિધાન- II : જો $S_n = an^2 + bn + c,$ હોય, તો $T_n = S_n - S_{n-1}$ થાય.
જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, }}{{\text{a}}_{\text{3}}}{\text{, }}{\text{......, }}{{\text{a}}_{\text{n}}}$ સમાંતર શ્રેણી હોય તો $\frac{1}{{{a_1}{a_2}}}\,\, + \,\,\frac{1}{{{a_2}{a_3}}}\, + \,\frac{1}{{{a_3}{a_4}}}\,\, + \,\,......\,\, + \,\frac{1}{{{a_{n - 1}}{a_n}}}\,\, = \,\,......$
સમાંતર શ્રેણીમાં યુગ્મ પદ છે. જો તેમાં રહેલ અયુગ્મ પદનો સરવાળો $24$ અને યુગ્મ પદનો સરવાળો $30$ છે. જો અંતિમ પદ પ્રથમ પદ કરતાં $10\frac{1}{2}$ જેટલું વધારે હોય તો સમાંતર શ્રેણીના પદની સંખ્યા મેળવો.
સમગુણોત્તર શ્રેણીના કેટલાક પદોનો સરવાળો $728$ છે, જો સામાન્ય ગુણોત્તર $3$ હોય અને છેલ્લું પદ $486$ તો શ્રેણીનું પહેલું પદ શું હોય?
જો $a,b,c$ સમાંતર શ્રેણીમાં હોય, તો $\frac{1}{{\sqrt b \, + \,\sqrt c }},\,\frac{1}{{\sqrt c + \,\sqrt a }},\,\frac{1}{{\sqrt a \, + \,\sqrt b }}\,\, = \,\,......$