- Home
- Standard 11
- Mathematics
8. Sequences and Series
medium
જો $\text{y}\,=\,{{\text{x}}^{\frac{\text{1}}{\text{3}}}}\text{.}\,{{\text{x}}^{\frac{\text{1}}{\text{9}}}}\text{.}\,{{\text{x}}^{\frac{\text{1}}{\text{27}}}}\,.....\,\infty $ હોય, તો $\text{y}\,=......$
A
$x^{1/3}$
B
$x^{2/3}$
C
$x^{1/2}$
D
$x$
Solution
$y\,\,=\,\,{{x}^{\frac{1}{3}}}\,.\,\,{{x}^{\frac{1}{9}}}\,.\,{{x}^{\frac{1}{27}}}\,\,……..\,\,\infty $
$y\,\,=\,\,{{x}^{\frac{1}{3}\,+\,\frac{1}{9}\,+\,\frac{1}{27}}}\,……..\,\,\infty $
$y\,\,=\,\,\,{{x}^{\left( \frac{a}{1\,-\,r} \right)}}\,=\,\,{{x}^{\left( \frac{{}^{1}\!\!\diagup\!\!{}_{3}\;}{1\,-\,{}^{1}\!\!\diagup\!\!{}_{3}\;} \right)}}\,\,=\,\,{{x}^{{}^{1}\!\!\diagup\!\!{}_{2}\;}}$
$y\,\,=\,\,{{x}^{{}^{1}\!\!\diagup\!\!{}_{2}\;}}$
Standard 11
Mathematics