અચળ $p, q$ માટે જે સમાંતર શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો $\left(p n+q n^{2}\right),$ હોય, તેનો સામાન્ય તફાવત શોધો. છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

According to the given condition,

$\frac{n}{2}[2 a+(n-1) d]=p n+q n^{2}$

$\Rightarrow \frac{n}{2}[2 a+n d-d]=p n+q n^{2}$

$\Rightarrow n a+n^{2} \frac{d}{2}-n \cdot \frac{d}{2}=p n+q n^{2}$

Comparing the coefficients of $n^{2}$ on both sides, we obtain

$\frac{d}{2}=q$

$\therefore d=2 q$

Thus, the common difference of the $A.P.$ is $2 q$

Similar Questions

જો $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ સમાંતર શ્નેણીમા હોય તો $x$  ની કિંમત મેળવો .  

  • [AIEEE 2002]

સમાંતર શ્રેણીના પ્રથમ ત્રણ પદોનો સરવાળો $39$ અને તેના છેલ્લા ચાર પદોનો સરવાળો $178$ છે. જો પ્રથમ પદ $10$ હોય તો સમાંતર શ્રેણીનો મધ્યસ્થ મેળવો.

  • [JEE MAIN 2015]

જ્યારે કોઈ સમાંતર શ્રેણીનું $9^{th}$ પદને તેના $2^{nd}$ પદ દ્વારા ભાગવામાં આવે તો ભાગફળ $5$ મળે અને જ્યારે $13^{th}$ પદને તેના $6^{th}$ પદ વડે ભાગવામાં આવે તો ભાગફળ $2$ અને શેષ $5$ મળે તો સમાંતર શ્રેણીનું પ્રથમ પદ મેળવો 

$2$ અથવા $5$ વડે વિભાજ્ય હોય તેવી $1$ થી $100$ વચ્ચેની સંખ્યાનો સરવાળો મેળવો.

  • [IIT 1984]

જો $a, b, c $ સમાંતર શ્રેણીમાં હોય, તો $(a + 2b - c) . (2b + c - a)(a + 2b + c) = ….$