અચળ $p, q$ માટે જે સમાંતર શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો $\left(p n+q n^{2}\right),$ હોય, તેનો સામાન્ય તફાવત શોધો. છે.
It is known that: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
According to the given condition,
$\frac{n}{2}[2 a+(n-1) d]=p n+q n^{2}$
$\Rightarrow \frac{n}{2}[2 a+n d-d]=p n+q n^{2}$
$\Rightarrow n a+n^{2} \frac{d}{2}-n \cdot \frac{d}{2}=p n+q n^{2}$
Comparing the coefficients of $n^{2}$ on both sides, we obtain
$\frac{d}{2}=q$
$\therefore d=2 q$
Thus, the common difference of the $A.P.$ is $2 q$
$a_1, a_2, a_3, ….a_n$ સમાંતર શ્રેણીમાં છે. જો તેનો સામાન્ય તફાવત $d$ હોય, તો $sin\,\, d[cosec\ a_1 . cosec\ a_2 + cosec\ a_2 . cosec\ a_3 +….+cosec\ a_{n -1} . cosec\ a_n] $ ની કિમત મેળવો.
$3$ અને $24$ વચ્ચે $6$ સંખ્યાઓ ઉમેરો કે જેથી બનતી શ્રેણી સમાંતર શ્રેણી બને.
અહી $S_{n}$ એ સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો દર્શાવે છે. જો $S_{3 n}=3 S_{2 n}$ હોય તો $\frac{S_{4 n}}{S_{2 n}}$ ની કિમંત મેળવો.
જો $a$ અને $100$ ની વચ્ચે $n$ સમાંતર મધ્યકો મૂકવામાં આવે કે જેથી પ્રથમ મધ્યકનો અંતિમ મધ્યક સાથેનો ગુણોત્તર $1: 7$ અને $a + n =33$ થાય, તો $n$ ની કિમત ...............છે.
જો $2x, x + 8$ અને $3x + 1$ સમાંતર શ્રેણીમાં હોય, તો $x = ….$