English
Hindi
8. Sequences and Series
medium

જો એક સમાંતર શ્રેણી માટે $S_{2n} = 2S_n$ હોય, તો $S_{3n}/ S_n = …….$

A

$4$

B

$6$

C

$8$

D

$10$

Solution

અહીં  $S_{2n} = 2S_n$

$\therefore \,\,\frac{2n}{2}\,(2a\,+\,(2n\,-\,1)\,d)\,\,=\,\,3\,\frac{n}{2}\,(2a\,+\,(n\,-\,1)\,d)\,\,\,\,$

$\therefore \,\,2a\,+\,(2n\,-\,1)\,d\,\,=\,\,\frac{3}{2}\,\,(2a\,+\,(n\,-\,1)\,d)$

$\therefore \,\,(2a\,+\,2nd\,-\,d)\,\,3\,\,(2a\,+\,nd\,-\,d)\,$

$\therefore \,\,\,\,2a\,\,=\,\,d\,\,(n\,+\,1)$

હવે,$\frac{{{S}_{3n}}}{{{S}_{n}}}\,\,=\,\,\frac{\frac{3n}{2}\,\left[ 2a\,+\,(3n\,-\,1)\,d \right]}{\frac{n}{2}\,\left[ 2a\,+\,(n\,-\,1)\,d \right]}$

$=\,\,\frac{3\,\left[ d\,(n\,+\,1)\,+\,(3n\,-\,1)\,d \right]}{d\,(n\,+\,1)\,+\,(n\,-\,1)\,d}$

$=\,\,\frac{3d\,(4n)}{d\,(2n)}\,\,=\,\,6$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.