આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=a_{2}=2, a_{n}=a_{n-1}-1,$ માટે $n\,>\,2$
$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n\,>\,2$
$\Rightarrow a_{3}=a_{2}-1=2-1=1$
$a_{4}=a_{3}-1=1-1=0$
$a_{5}=a_{4}-1=0-1=-1$
Hence, the first five terms of the sequence are $2,2,1,0$ and $-1$
The corresponding series is $2+2+1+0(-1)+\ldots$
જો $a, b, c,d$ સમગુણોત્તર શ્રેણીમાં હોય, તો સાબિત કરો કે $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ સમગુણોત્તર શ્રેણીમાં છે.
સમાંતર શ્રેણી $4 + 9 + 14 +19 +.......$ ના $15$ માં પદની સંખ્યા......છે.
સમાંતર શ્રેણીનાં $n$ પદોનો સરવાળો $3n^2 + 5n$ અને $t_n = 164$ હોય, તો $n =…..$
જો સમાંતર શ્રેણી $2, 5, 8, ..$ ના પ્રથમ $2n$ પદોનો સરવાળો એ સમાંતર શ્રેણી $57, 59, 61, ..$ ના પ્રથમ $n$ પદોના સરવાળા બરાબર હોય, તો $n =…$
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=n(n+2)$