સમાંતર શ્રેણીનું $r$ મું પદ $T_r$ લો.$ r = 1, 2, 3, ….$ માટે. જો કેટલાક ધન પૂર્ણાકો $m, n$ માટે

${{\text{T}}_{\text{m}}}\,=\,\,\frac{1}{n}\,$ અને ${{\text{T}}_{\text{n}}}\,=\,\frac{\text{1}}{\text{m}}\text{,}$ હોય,તો ${{\text{T}}_{\text{mn}}}\text{ }......$

  • A

    $\frac{1}{{mn}}$

  • B

    $\frac{1}{m}\, + \,\,\frac{1}{n}$

  • C

    $1$

  • D

    $0$

Similar Questions

ધારો કે $a _1, a _2, \ldots, a _{2024}$ એક એવી સમાંતરશ્રેણી છે કે જેથી  $a _1+\left( a _5+ a _{10}+ a _{15}+\ldots+ a _{2020}\right)+ a _{2024}= 2233$. તો $a_1+a_2+a_3+\ldots+a_{2024}$  ________

  • [JEE MAIN 2025]

શ્રેણી $a_{n}$ નીચે પ્રમાણે વ્યાખ્યાયિત છે :

${a_1} = 1,$ $n\, \ge \,2$ માટે ${a_n} = {a_{n - 1}} + 2.$

આ શ્રેણીનાં પ્રથમ પાંચ પદ લખો અને સંબંધિત શ્રેઢી લખો : 

જો $a, b, c,d$ સમગુણોત્તર શ્રેણીમાં હોય, તો સાબિત કરો કે $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ સમગુણોત્તર શ્રેણીમાં છે.

જો એક સમાંતર શ્રેણી $a_{1} a_{2}, a_{3}, \ldots$ ના પ્રથમ $11$ પદોનો સરવાળો $0\left(\mathrm{a}_{1} \neq 0\right)$ થાય અને સમાંતર શ્રેણી $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ પદોનો સરવાળો $k a_{1}$ થાય તો $k$ ની કિમત મેળવો 

  • [JEE MAIN 2020]

જો $a, b, c$ એ ત્રણ સમગુણોત્તર શ્રેણીના ત્રણ ભિન્ન પદો હોય તથા સમીકરણ $ax^2 + 2bc + c = 0$ અને $dx^2 + 2ex + f = 0$ ને સામાન્ય ઉકેલો હોય તો નીચેનાના માંથી ક્યું વિધાન સાચું છે ?

  • [JEE MAIN 2019]