ધારોકે એક સમાંતર શ્રેણીમાં પદોની સંખ્યા $2 k, k \in N$ છે. જો સમાંતર શ્રેણીના તમામ એકી પદોનો સરવાળો $40$ હોય, તમામ બેકી પદોનો સરવાળો $55$ હોય તથા સમાંતર શ્રેણીનું છેલ્લું પદ એ પ્રથમ પદ કરતાં $27$ વધારે હોય, તો $k =$ _______

  • [JEE MAIN 2025]
  • A
    $5$
  • B
    $8$
  • C
    $6$
  • D
    $4$

Similar Questions

એક માણસ વાર્ષિક $5\%$ ના સાદા વ્યાજે બેંકમાં $Rs.$ $10,000$ જમા કરાવે છે, તો તેણે જમા કરાવેલ રકમથી $15$ માં વર્ષમાં જમા રકમ અને $20$ વર્ષ પછીની કુલ રકમ શોધો. 

જો એક સમાંતર શ્રેણીનું પ્રથમ પદ $3$ અને તેના પ્રથમ $25$ પદોનો સરવાળો તે પછીના બીજા $15$ પદોનો સરવાળા જેટલો થાય તો સમાંતર શ્રેણીનો સામાન્ય તફાવત મેળવો 

  • [JEE MAIN 2020]

$3$ અને $23$ ની વચ્ચેના ચાર સમાંતર મધ્યક..... છે.

સમાંતર શ્રેણીઓ $3,7,11, \ldots ., 407$ અને  $2,9,16, \ldots . .709$ ના સામાન્ય પદોની સંખ્યા મેળવો.

  • [JEE MAIN 2020]

${S_1},{S_2},......,{S_{101}}$ એ કોઈ સમાંતર શ્રેણીના ક્રમિક પદો છે જો $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ અને ${S_1} + {S_{101}} = 50$ ,હોય તો $\left| {{S_1} - {S_{101}}} \right|$ ની કિમત મેળવો