અનંત સમગુણોત્તર શ્રેણીના પદોનો સરવાળો $3$ અને તેમના વર્ગનો સરવાળો પદ $3$ થાય, તો શ્રેણીનું પ્રથમ પદ અને સામાન્ય ગુણોત્તર કેટલો થાય?
$1,\,\frac{1}{2}$
$\frac{3}{2},\,\frac{1}{2}$
$\frac{1}{2},\,\frac{3}{2}$
આપેલ પૈકી એક પણ નહિ
જો $b_1, b_2,......, b_n$ એ સંગુણોત્તર શ્રેઢી એવી છે કે જેથી $b_1 + b_2 = 1$ અને $\sum\limits_{k = 1}^\infty {{b_k} = 2} $ જ્યાં $b_2 < 0$ ,હોય તો $b_1$ ની કિમત મેળવો
$8,88,888,8888 \ldots$ શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો શોધો.
જો સમગુણોત્તર શ્રેણીની $(p + q)^{th}$ મું પદ $m$ અને $(p - q)^{th}$ મું પદ $n$ હોય તો $p^{th}$ મું પદ શું હોય?
એક સમગુણોત્તર શ્રેણીનાં પદોની સંખ્યા યુગ્મ છે. જો બધાં જ પદોનો સરવાળો, અયુગ્મ સ્થાને રહેલ પદોના સરવાળા કરતાં $5$ ગણો હોય, તો સામાન્ય ગુણોત્તર શોધો.
સમગુણોત્તર શ્રેણીમાં નિર્દેશિત પદોનો સરવાળો શોધો : ${1, - a,{a^2}, - {a^3}, \ldots }$ પ્રથમ $n$ પદ