ધારોકે $\mathrm{ABC}$ એક સમબાજુ ત્રિકોણ છે. આપેલ ત્રિકોણ $\mathrm{ABC}$ ની બધી બાજુઓના મધ્યબિંદુઓને જોડીને એક નવો ત્રિકોણ બનાવવામાં આવે છે અને આ પ્રક્રિયાનું અનંત વખત પુનરાવર્તન કરવામાં આવે છે. જો આ પ્રક્કિયામાં બનતા તમામ ત્રિકોણોની પરિમિતિઓ નો સરવાળો $P$ હોય અને ક્ષેત્રફળોનો સરવાળો $Q$ હોય, તો ....................
$\mathrm{P}^2=36 \sqrt{3} \mathrm{Q}$
$\mathrm{P}^2=6 \sqrt{3} \mathrm{Q}$
$P=36 \sqrt{3} Q^2$
$\mathrm{P}^2=72 \sqrt{3} \mathrm{Q}$
ધારો કે $\left\{a_k\right\}$ અને $\left\{b_k\right\}, k \in N$, એ અનુક્રમે $r _1$ અને $r _2$ સામાન્ય ગુણોત્તરવાળી એવી બે સમગુણોત્તર શ્રેણીઓ છે, જ્યાં $a_1=b_1=4$ અને $r _1 < r _2$. ધારો કે $c _k=a_k+ b _k, k \in N$. જો $c _2=5$ અને $c _3=\frac{13}{4}$ હોય,તો $\sum \limits_{k=1}^{\infty} c _k-\left(12 a_6+8 b_4\right)=............$
જો $a = r + r^2 + r^3 + …..+\infty$ હોય તો $r$ નું મૂલ્ય ....... છે.
જો $x,\;y,\;z$ એ સમગુણોતર શ્નેણીમાંં હોય અને ${a^x} = {b^y} = {c^z}$ તે
જો સમગુણોત્તર શ્રેણીની $(p + q)^{th}$ મું પદ $m$ અને $(p - q)^{th}$ મું પદ $n$ હોય તો $p^{th}$ મું પદ શું હોય?
જો $f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta}, \theta \in \mathbb{R}$ નો વિસ્તાર $[\alpha, \beta]$ હોય, તો જેનું પ્રથમ પદ $64$ હોય અને સામાન્ય ગુણોત્તર $\frac{\alpha}{\beta}$ હોય તેવી અનંત સમગુણોત્તર શ્રેણીનો સરવાળો ............ છે.