- Home
- Standard 11
- Mathematics
જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, }}{{\text{a}}_{\text{3}}}{\text{ }}............{\text{ , }}{{\text{a}}_{\text{n}}}$ સમગુણોત્તર શ્રેણી રચે છે.
$\left| {\begin{array}{*{20}{c}}
{\log \,{a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}} \\
{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}} \\
{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}
\end{array}} \right|$ ની કિંમતની મેળવો.
$0$
$-2$
$2$
$1$
Solution
${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, }}{{\text{a}}_{\text{3}}}{\text{ }}…………{\text{ , }}{{\text{a}}_{\text{n}}}$ સમગુણોત્તર શ્રેણીમાં છે ધારો કે સામાન્ય ગુણોત્તર $r$ છે.
$D\,\, = \,\,\left| {\begin{array}{*{20}{c}}
{\log \,{a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}} \\
{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}} \\
{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}
\end{array}} \right|$
$ = \,\,\left| {\begin{array}{*{20}{c}}
{\log {a_n}}&{\log {a_n} + \log r}&{\log {a_n} + 2\log r} \\
{\log {a_{n + 3}}}&{\log {a_{n + 3}} + \log r}&{\log {a_{n + 3}} + 2\log r} \\
{\log {a_{n + 6}}}&{\log {a_{n + 6}} + \log r}&{\log {a_{n + 6}} + 2\log r}
\end{array}} \right|$
$ = \,\,\left| {\begin{array}{*{20}{c}}
{\log \,{a_n}}&{\log r}&{\log r} \\
{\log {a_{n + 3}}}&{\log r}&{\log r} \\
{\log {a_{n + 6}}}&{\log r}&{\log r}
\end{array}} \right|\,\,\, = \,\,0\,\,$
$\,(\,\,\because \,\,\,{c_2}\,\, = \,\,{c_3}\,\,)$