જો ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ અને $a,\;b,\;c$ એ સમગુણોતર શ્રેણીમાં હોય તો $x,\;y,\;z$ ................... શ્રેણીમાં છે.
$A.P.$
$G.P.$
$H.P.$
એકપણ નહિ.
આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=a_{2}=2, a_{n}=a_{n-1}-1,$ માટે $n\,>\,2$
વધતી સમાંતર શ્રેણીમાં ચાર જુદા જુદા પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો બધી જ સંખ્યાઓનો ગુણાકાર કેટલો થાય ?
ધારોકે $a, b, c$ સમાંતર શ્રેણીમાં છે. ધારો કે $(a, c), (2, b)$ અને $(a, b)$ શિરોબિંદુવાળા ત્રિકોણનું મધ્યકેન્દ્ર $\left(\frac{10}{3}, \frac{7}{3}\right)$ છે. જો સમીકરણ $ax ^{2}+ bx +1=0$ નાં બીજ $\alpha, \beta$ હોય, તો $\alpha^{2}+\beta^{2}-\alpha \beta$ નું મૂલ્ય ....... છે.
$a_1, a_2, a_3, ….a_n$ સમાંતર શ્રેણીમાં છે. જો તેનો સામાન્ય તફાવત $d$ હોય, તો $sin\,\, d[cosec\ a_1 . cosec\ a_2 + cosec\ a_2 . cosec\ a_3 +….+cosec\ a_{n -1} . cosec\ a_n] $ ની કિમત મેળવો.