જો સમાંતર શ્રેણીનું પ્રથમ પદ $a$ સામાન્ય તફાવત $1 $ અને અંતિમ પદ $b$ પદ, હોય, તો તેનો સરવાળો કેટલો થાય ?
$\frac{{(a\, + \,b)\,(1\, + \,a\, - \,b)}}{2}$
$\frac{{(a\, + \,b)\,(1\, - \,a\, + \,b)}}{2}$
$\frac{{(a + \,b)\,(1 - \,a)}}{2}$
$(a + b) (1 - a + b)$
જો $\log _e \mathrm{a}, \log _e \mathrm{~b}, \log _e \mathrm{c}$ $A.P.$ (સમાંતર શ્રેણી) માં હોય તથા $\log _e \mathrm{a}-\log _e 2 \mathrm{~b}, \log _e 2 \mathrm{~b}-$ $\log _e 3 \mathrm{c}, \log _e 3 \mathrm{c}-\log _e a $ પણ $A.P.$ માં હોય, તો $a: b: c=$____________.
$3$ અને $24$ વચ્ચે $6$ સંખ્યાઓ ઉમેરો કે જેથી બનતી શ્રેણી સમાંતર શ્રેણી બને.
અહી $a$, $b$ એ બે શૂન્યતર વાસ્તવિક સંખ્યા છે . જો $p$ અને $r$ એ સમીકરણ $x ^{2}-8 ax +2 a =0$ ના બીજ છે અને $q$ અને $s$ એ સમીકરણ $x^{2}+12 b x+6 b$ $=0$ ના બીજ છે કે જેથી $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ એ સમાંતર શ્રેણીમાં છે તો $a ^{-1}- b ^{-1}$ ની કિમંત $......$ થાય.
જો $a, b, c,d$, તે સમગુણોત્તર શ્રેણીમાં હોય, અને જો $a$ અને $b$ $x^{2}-3 x+p=0$ ના બીજ હોય અને $c, d$ $x^{2}-12 x+q=0$ ના બીજ હોય તો સાબિત કરો કે $(q+p):(q-p)=17: 15$
ત્રણ ધન પુર્ણાકો $p, q, r \quad x^{p q^2}=y^{q r}=z^{p^2 r}$ અને $r = pq +1$ એવા છે કે જેથી $3,3 \log _y x, 3 \log _z y , 7 \log _x z$ સમાંતર શ્રેણીમાં (જ્યાં સામાન્ય તફાવત $\frac{1}{2}$ છે.) તો $r-p-q=..........$