જો સમાંતર શ્રેણીનું પ્રથમ પદ $a$ સામાન્ય તફાવત $1 $ અને અંતિમ પદ $b$ પદ, હોય, તો તેનો સરવાળો કેટલો થાય ?
$\frac{{(a\, + \,b)\,(1\, + \,a\, - \,b)}}{2}$
$\frac{{(a\, + \,b)\,(1\, - \,a\, + \,b)}}{2}$
$\frac{{(a + \,b)\,(1 - \,a)}}{2}$
$(a + b) (1 - a + b)$
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=n(n+2)$
અહી $S_{n}$ એ સમાંતર શ્રેણીના $n$- નો સરવાળો દર્શાવે છે. જો $S_{10}=530, S_{5}=140$ તો $\mathrm{S}_{20}-\mathrm{S}_{6}$ ની કિમંત મેળવો.
ધારો કે $a_1, a_2, \ldots, a_n$ સમાંતર શ્રેણીમાં છ. જો $a_5=2 a_7$ અને $a_{11}=18$ હોય, તો $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)=................$
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=\frac{2 n-3}{6}$
જો સમાંતર શ્રેણીના $p$ માં પદ $q$ માં પદ વચ્ચેનો સમાંતર મધ્યક એ તેના $r$ માં અને $s$ માં પદ વચ્ચે નાં સમાંતર મધ્યક જેટલો હોય, તો $p + q = ......$