સમાંતર શ્રેણીના પ્રથમ $p$ પદોનો સરવાળો, પ્રથમ $q$ પદોના સરવાળા જેટલો થાય છે, તો પ્રથમ $(p+q)$ પદોનો સરવાળો શોધો.
Let $a$ and $d$ be the first term and the common difference of the $A.P.$ respectively.
Here,
$S_{P}=\frac{p}{2}[2 a+(p-1) d]$
$S_{q}=\frac{p}{2}[2 a+(q-1) d]$
According to the given condition, $\frac{p}{2}[2 a+(p-1) d]=\frac{q}{2}[2 a+(q-1) d]$
$\Rightarrow p[2 a+(p-1) d]=q[2 a+(q-1) d]$
$\Rightarrow 2 a p+p d(p-1)=2 a q+q d(q-1)$
$\Rightarrow 2 a(p-q)+d[p(p-1)-q(q-1)]=0$
$\Rightarrow 2 a(p-q)+d\left[p^{2}-p-q^{2}+q\right]=0$
$\Rightarrow 2 a(p-q)+d[(p-q)(p+q)-(p-q)]=0$
$\Rightarrow 2 a(p-q)+d[(p-q)(p+q-1)]=0$
$\Rightarrow 2 a+d(p+q-1)=0$
$\Rightarrow d=\frac{-2 a}{p+q-1}$ .........$(1)$
$\therefore S_{p+q}=\frac{p+q}{2}[2 a+(p+q-1) \cdot d]$
$\Rightarrow S_{p+q}=\frac{p+q}{2}\left[2 a+(p+q-1)\left(\frac{-2 a}{p+q-1}\right)\right]$ [ From $(1)$ ]
$=\frac{p+q}{2}[2 a-2 a]$
$=0$
Thus, the sum of the first $(p+q)$ terms of the $A.P.$ is $0$
અહી $x_n, y_n, z_n, w_n$ એ ધન પદો ધરાવતી ભિન્ન સમાંતર શ્રેણીના $n^{th}$ પદો છે જો $x_4 + y_4 + z_4 + w_4 = 8$ અને $x_{10} + y_{10} + z_{10} + w_{10} = 20,$ હોય તો $x_{20}.y_{20}.z_{20}.w_{20}$ ની મહત્તમ કિમત મેળવો
જો $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ સમાંતર શ્નેણીમા હોય તો $x$ ની કિંમત મેળવો .
જો ${a_1},\;{a_2},\;{a_3}.......{a_n}$ એ સંમાતર શ્રેણીમંા હોય કે જયાંં ${a_i} > 0$,તો $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = $ ___.
જો સમાંતર શ્રેણીના $p$ માં પદ $q$ માં પદ વચ્ચેનો સમાંતર મધ્યક એ તેના $r$ માં અને $s$ માં પદ વચ્ચે નાં સમાંતર મધ્યક જેટલો હોય, તો $p + q = ......$
જો $1,\,{\log _9}\,\left( {{3^{1 - x}}\, + \,2} \right),\,\,{\log _3}\,\left( {{{4.3}^x}\, - \,1} \right)$
સમાંતર શ્રેણીમાં ,હોય તો ${\text{x = }}........$