સમાંતર શ્રેણીના પ્રથમ $p$ પદોનો સરવાળો, પ્રથમ $q$ પદોના સરવાળા જેટલો થાય છે, તો પ્રથમ $(p+q)$ પદોનો સરવાળો શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ and $d$ be the first term and the common difference of the $A.P.$ respectively.

Here,

$S_{P}=\frac{p}{2}[2 a+(p-1) d]$

$S_{q}=\frac{p}{2}[2 a+(q-1) d]$

According to the given condition, $\frac{p}{2}[2 a+(p-1) d]=\frac{q}{2}[2 a+(q-1) d]$

$\Rightarrow p[2 a+(p-1) d]=q[2 a+(q-1) d]$

$\Rightarrow 2 a p+p d(p-1)=2 a q+q d(q-1)$

$\Rightarrow 2 a(p-q)+d[p(p-1)-q(q-1)]=0$

$\Rightarrow 2 a(p-q)+d\left[p^{2}-p-q^{2}+q\right]=0$

$\Rightarrow 2 a(p-q)+d[(p-q)(p+q)-(p-q)]=0$

$\Rightarrow 2 a(p-q)+d[(p-q)(p+q-1)]=0$

$\Rightarrow 2 a+d(p+q-1)=0$

$\Rightarrow d=\frac{-2 a}{p+q-1}$          .........$(1)$

$\therefore S_{p+q}=\frac{p+q}{2}[2 a+(p+q-1) \cdot d]$

$\Rightarrow S_{p+q}=\frac{p+q}{2}\left[2 a+(p+q-1)\left(\frac{-2 a}{p+q-1}\right)\right]$             [ From $(1)$ ]

$=\frac{p+q}{2}[2 a-2 a]$

$=0$

Thus, the sum of the first $(p+q)$ terms of the $A.P.$ is $0$

Similar Questions

અહી $a$, $b$ એ બે શૂન્યતર વાસ્તવિક સંખ્યા છે . જો  $p$ અને $r$ એ સમીકરણ $x ^{2}-8 ax +2 a =0$ ના બીજ છે અને $q$ અને $s$ એ સમીકરણ $x^{2}+12 b x+6 b$ $=0$ ના બીજ છે કે જેથી  $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ એ સમાંતર શ્રેણીમાં છે તો $a ^{-1}- b ^{-1}$ ની કિમંત $......$ થાય.

  • [JEE MAIN 2022]

જ્યારે કોઈ સમાંતર શ્રેણીનું $9^{th}$ પદને તેના $2^{nd}$ પદ દ્વારા ભાગવામાં આવે તો ભાગફળ $5$ મળે અને જ્યારે $13^{th}$ પદને તેના $6^{th}$ પદ વડે ભાગવામાં આવે તો ભાગફળ $2$ અને શેષ $5$ મળે તો સમાંતર શ્રેણીનું પ્રથમ પદ મેળવો 

સમાંતર શ્રેણીમાં $T_m = n$ અને $T_n = m$ હોય, તો $T_p$ = ……

પ્રત્યેક પ્રાકૃતિક સંખ્યા $n$ માટે બે સમાંતર શ્રેણીનાં પ્રથમ $n$ પદોના સરવાળાનો ગુણોત્તર $5 n+4: 9 n+6 .$ છે. તેમનાં $18$ માં પદનો ગુણોત્તર મેળવો. 

એક વ્યક્તિ તેની લોનની ચુકવણી માટે પ્રથમ હપતામાં $Rs.$ $100 $ ભરે છે. જો તે દર મહિને હપતાની રકમમાં $Rs \,5$ વધારે ભરે, તો તેના $30$ માં હપતામાં કેટલી રકમ ચૂકવશે?