એક સમાંતર શ્રેણીનાં પ્રથમ $p, q$ અને $r$ પદોના સરવાળા અનુક્રમે $a, b$ અને $c$ છે. સાબિત કરો કે $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
Let $a_{1}$ and $d$ be the first term and the common difference of the $A.P.$ respectively According to the given information,
$S_{p}=\frac{p}{2}\left[2 a_{1}+(p-1) d\right]=a$ .........$(1)$
$\Rightarrow 2 a_{1}+(p-1) d=\frac{2 a}{p}$
$S_{q}=\frac{q}{2}\left[2 a_{1}+(q-1) d\right]=b$ ............$(2)$
$S_{r}=\frac{r}{2}\left[2 a_{1}+(r-1) d\right]=c$
$\Rightarrow 2 a_{1}+(r-1) d=\frac{2 c}{r}$ ............$(3)$
Subtracting $(2)$ from $(1),$ we obtain
$(p-1) d-(q-1) d=\frac{2 a}{p}-\frac{2 b}{q}$
$\Rightarrow d(p-1-q+1)=\frac{2 a q-2 b p}{p q}$
$\Rightarrow d(p-q)=\frac{2 a q-2 b p}{p q}$
$\Rightarrow d=\frac{2(a q-b p)}{p q(p-q)}$ ..........$(4)$
Subtracting $(3)$ from $(2),$ we obtain
$(q-1) d-(r-1) d=\frac{2 b}{q}-\frac{2 c}{r}$
$\Rightarrow d(q-1-r+1)=\frac{2 b}{q}-\frac{2 c}{r}$
$\Rightarrow d(q-r)=\frac{2 b r-2 q c}{q r}$
$\Rightarrow d=\frac{2(b r-q c)}{q r(q-r)}$ ...........$(5)$
Equating both the values of $d$ obtained in $(4)$ and $(5),$ we obtain
$\frac{a q-b p}{p q(p-q)}=\frac{b r-q c}{q r(q-r)}$
$\Rightarrow q r(q-r)(a q-b q)=p q(q-q)(b r-q c)$
$\Rightarrow r(a q-b p)(q-r)=p(b r-q c)(p-q)$
$\Rightarrow(a q r-b p r)(q-r)=(b p r-p q c)(p-q)$
Dividing both sides by $pqr,$ we obtain
$\left(\frac{a}{p}-\frac{b}{q}\right)(q-r)=\left(\frac{b}{q}-\frac{c}{r}\right)(p-q)$
$\Rightarrow \frac{a}{p}(q-r)-\frac{b}{q}(q-r+p-q)+\frac{c}{r}(p-q)=0$
$\Rightarrow \frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
Thus, the given result is proved.
જો શ્રેણીનું $n$ મું પદ $n(n+1)$ હોય તો તેના $n$ પદોનો સરવાળો કેટલો થાય ?
પ્રથમ ત્રણ પદો લખો : $a_{n}=2 n+5$
જો $S_n$ અને $s_n$ એ $n$ પદો ધરાવતી બે ભિન્ન સમાંતર શ્રેણી છે કે જેના માટે $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ હોય તો $\frac{{{s_n}}}{{{S_{2n}}}}$ ની કિમત મેળવો
જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, }}{{\text{a}}_{\text{3}}}{\text{ }}............{\text{ , }}{{\text{a}}_{\text{n}}}$ સમગુણોત્તર શ્રેણી રચે છે.
$\left| {\begin{array}{*{20}{c}}
{\log \,{a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}} \\
{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}} \\
{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}
\end{array}} \right|$ ની કિંમતની મેળવો.
જો $a,b,c,d$ અને $p$ જુદી જુદી વાસ્તવિક સંખ્યાઓ હોય કે જેથી $(a^2 + b^2 + c^2)\ p^2 - 2p (ab + bc + cd) + (b^2 + c^2 + d^2) \leq 0$, થાય તો ....