એક સમાંતર શ્રેણીનાં પ્રથમ $p, q$ અને $r$ પદોના સરવાળા અનુક્રમે $a, b$ અને $c$ છે. સાબિત કરો કે $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
Let $a_{1}$ and $d$ be the first term and the common difference of the $A.P.$ respectively According to the given information,
$S_{p}=\frac{p}{2}\left[2 a_{1}+(p-1) d\right]=a$ .........$(1)$
$\Rightarrow 2 a_{1}+(p-1) d=\frac{2 a}{p}$
$S_{q}=\frac{q}{2}\left[2 a_{1}+(q-1) d\right]=b$ ............$(2)$
$S_{r}=\frac{r}{2}\left[2 a_{1}+(r-1) d\right]=c$
$\Rightarrow 2 a_{1}+(r-1) d=\frac{2 c}{r}$ ............$(3)$
Subtracting $(2)$ from $(1),$ we obtain
$(p-1) d-(q-1) d=\frac{2 a}{p}-\frac{2 b}{q}$
$\Rightarrow d(p-1-q+1)=\frac{2 a q-2 b p}{p q}$
$\Rightarrow d(p-q)=\frac{2 a q-2 b p}{p q}$
$\Rightarrow d=\frac{2(a q-b p)}{p q(p-q)}$ ..........$(4)$
Subtracting $(3)$ from $(2),$ we obtain
$(q-1) d-(r-1) d=\frac{2 b}{q}-\frac{2 c}{r}$
$\Rightarrow d(q-1-r+1)=\frac{2 b}{q}-\frac{2 c}{r}$
$\Rightarrow d(q-r)=\frac{2 b r-2 q c}{q r}$
$\Rightarrow d=\frac{2(b r-q c)}{q r(q-r)}$ ...........$(5)$
Equating both the values of $d$ obtained in $(4)$ and $(5),$ we obtain
$\frac{a q-b p}{p q(p-q)}=\frac{b r-q c}{q r(q-r)}$
$\Rightarrow q r(q-r)(a q-b q)=p q(q-q)(b r-q c)$
$\Rightarrow r(a q-b p)(q-r)=p(b r-q c)(p-q)$
$\Rightarrow(a q r-b p r)(q-r)=(b p r-p q c)(p-q)$
Dividing both sides by $pqr,$ we obtain
$\left(\frac{a}{p}-\frac{b}{q}\right)(q-r)=\left(\frac{b}{q}-\frac{c}{r}\right)(p-q)$
$\Rightarrow \frac{a}{p}(q-r)-\frac{b}{q}(q-r+p-q)+\frac{c}{r}(p-q)=0$
$\Rightarrow \frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
Thus, the given result is proved.
ધારો કે $a_1, a_2, \ldots, a_n$ સમાંતર શ્રેણીમાં છ. જો $a_5=2 a_7$ અને $a_{11}=18$ હોય, તો $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)=................$
ધારો કે $\mathrm{S}_{\mathrm{n}}$ એક સમાંતર શ્રેણીના પ્રથમ $\mathrm{n}$ પદ્દોનો સરવાળો દર્શાવે છે. જે $\mathrm{S}_{10}=390$ તથા દસમા અને પાંચમા પદોનો ગુણોત્તર $15: 7$ હોય, તો $S_{15}-S_5=$........................
$p , q \in R$ માટે, વાસ્તવિક વિધેય $f(x)=(x- p )^{2}- q , x \in R$ અને $q >0$ ધ્યાનેન લો. ધારોકે $a _{1}, a _{2}, a _{3}$ અને $a _{4}$ એ સમાંતર શ્રેણીમાં છે તથા તેનો મધ્યક $p$ અને સામાન્ય તફાવત ધન છે. જો પ્રત્યેક $i=1,2,3,4$ માટે $\left|f\left( a _{i}\right)\right|=500$, તો $f(x)=0$ નાં બીજો વચ્ચેનો નિરપેક્ષ તફાવત ............ છે.
બધી બે અંકોની સંખ્યા કે જેને છ વડે ભાગતા શેષ ચાર મળે, તેનો સરવાળો કેટલો થાય ?
જો $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ અને $\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$ ના વિસ્તરણમાં મધ્યમ પદોના સહગુણકો અનુક્રમે સમાંતર શ્રેણીમાં છે અને $d$ સમાંતર શ્રેણીનો સામાન્ય તફાવત હોય તો $50-\frac{2 d}{\beta^{2}}$ ની કિમંત મેળવો.