સમાંતર શ્રેણીમાં યુગ્મ પદ છે. જો તેમાં રહેલ અયુગ્મ પદનો સરવાળો $24$ અને યુગ્મ પદનો સરવાળો $30$ છે. જો અંતિમ પદ પ્રથમ પદ કરતાં $10\frac{1}{2}$ જેટલું વધારે હોય તો સમાંતર શ્રેણીના પદની સંખ્યા મેળવો.
$4$
$8$
$12$
$16$
જો $a_1, a_2, a_3 …………$ એ સમાંતર શ્રેણીમાં છે અને $a_1 + a_4 + a_7 + …………… + a_{16} = 114$, હોય તો $a_1 + a_6 + a_{11} + a_{16}$ ની કિમંત મેળવો.
પાંચ સંખ્યાઓ સમાંતર શ્રેણીમાં છે કે જેનો સરવાળો $25$ થાય અને ગુણાકાર $2520 $ થાય. જો પાંચ પૈકી કોઈ એક સંખ્યા $-\frac{1}{2},$ હોય તો તેમાથી મહતમ સંખ્યા મેળવો.
જો ${T_r}$ એ સમાંતર શ્રેણીનું ${r^{th}}$ મું પદ દર્શાવે કે જ્યાં $r = 1,\;2,\;3,....$.,જો કોઇક ધન પૂર્ણાંક $m,\;n$ માટે ${T_m} = \frac{1}{n}$ અને ${T_n} = \frac{1}{m}$, તો ${T_{mn}}$ મેળવો.
અહી $S_{1}$ એ સમાંતર શ્રેણીના પ્રથમ $2 n$ નો સરવાળો દર્શાવે છે અને $S_{2}$ તે જ સમાંતર શ્રેણીના પ્રથમ $4n$ નો સરવાળો દર્શાવે છે. જો $\left( S _{2}- S _{1}\right) =1000$ હોયતો પ્રથમ $6 n$ પદોનો સરવાળો મેળવો.
સમાંતર શ્રેણીનાં $n$ પદોનો સરવાળો $3n^2 + 5n$ અને $t_n = 164$ હોય, તો $n =…..$