એક સમાંતર શ્રેણીનું $p$ મું પદ $\frac{1}{q}$ અને $q$ મું પદ $\frac{1}{p}$છે. $p \neq q$ માટે સાબિત કરો કે પ્રથમ $pq$ પદનો સરવાળો $\frac{1}{2}(p q+1)$ થાય.
It is known that the general term of an $A.P.$ is $a_{n}=a+(n-1) d$
$\therefore$ According to the given information,
$p^{\text {th }}$ term $=a_{p}=a+(p-1) d=\frac{1}{q}$ ......$(1)$
$q^{ th }$ term $=a_{q}=a+(q-1) d=\frac{1}{p}$ ........$(2)$
Subtracting $(2)$ from $(1),$ we obtain
$(p-1) d-(q-1) d=\frac{1}{q}-\frac{1}{p}$
$\Rightarrow(p-1-q+1) d=\frac{p-q}{p q}$
$\Rightarrow(p-q) d=\frac{p-q}{p q}$
$\Rightarrow d=\frac{1}{p q}$
Putting the value of $d$ in $(1),$ we obtain $a+(p-1) \frac{1}{p q}=\frac{1}{q}$
$\Rightarrow a=\frac{1}{q}-\frac{1}{q}+\frac{1}{p q}=\frac{1}{p q}$
$\therefore {S_{pq}} = \frac{{pq}}{2}[2a + (pq - 1)d]$
$=\frac{p q}{2}\left[\frac{2}{p q}+(p q-1) \frac{1}{p q}\right]$
$=1+\frac{1}{2}(p q-1)$
$=\frac{1}{2} p q+1-\frac{1}{2}=\frac{1}{2} p q+\frac{1}{2}$
$=\frac{1}{2}(p q+1)$
Thus, the sum of first pq terms of the $A.P.$ is $=\frac{1}{2}(p q+1)$
જો $log2, log (2^x - 1)$ અને $log (2^x + 3)$ સમાંતર શ્રેણીમાં હોય તો $x$ નું મૂલ્ય....... છે.
નીચેની ત્રણ સમાંતર શ્રેણીઓ
$3,7,11,15,...................,399$
$2,5,8,11,............,359$ અને
$2,7,12,17,...........,197$,
ના સામાન્ય પદોનો સરવાળો $.....$ છે.
શમશાદ અલી એક સ્કૂટર $Rs$ $22,000$ માં ખરીદે છે. તે $Rs$ $4000$ રોકડા ચૂકવે છે અને બાકીની રકમ $Rs$ $1000$ ના વાર્ષિક હપતાથી અને $10\%$ વ્યાજે ચૂકવે છે, તો તેણે સ્કૂટરની શું કિંમત ચૂકવી હશે? “
સમાંતર શ્રેણી $4 + 9 + 14 +19 +.......$ ના $15$ માં પદની સંખ્યા......છે.
શ્રેણી $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots,-129 \frac{1}{4}$ ના છેલ્લે થી $20$ મું પદ__________ છે.