એક સમાંતર શ્રેણીનું $p$ મું પદ $\frac{1}{q}$ અને $q$ મું પદ $\frac{1}{p}$છે. $p \neq q$ માટે સાબિત કરો કે પ્રથમ $pq$ પદનો સરવાળો $\frac{1}{2}(p q+1)$ થાય. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that the general term of an $A.P.$ is $a_{n}=a+(n-1) d$

$\therefore$ According to the given information,

$p^{\text {th }}$ term $=a_{p}=a+(p-1) d=\frac{1}{q}$      ......$(1)$

$q^{ th }$ term $=a_{q}=a+(q-1) d=\frac{1}{p}$       ........$(2)$

Subtracting $(2)$ from $(1),$ we obtain

$(p-1) d-(q-1) d=\frac{1}{q}-\frac{1}{p}$

$\Rightarrow(p-1-q+1) d=\frac{p-q}{p q}$

$\Rightarrow(p-q) d=\frac{p-q}{p q}$

$\Rightarrow d=\frac{1}{p q}$

Putting the value of $d$ in $(1),$ we obtain $a+(p-1) \frac{1}{p q}=\frac{1}{q}$

$\Rightarrow a=\frac{1}{q}-\frac{1}{q}+\frac{1}{p q}=\frac{1}{p q}$

$\therefore {S_{pq}} = \frac{{pq}}{2}[2a + (pq - 1)d]$

$=\frac{p q}{2}\left[\frac{2}{p q}+(p q-1) \frac{1}{p q}\right]$

$=1+\frac{1}{2}(p q-1)$

$=\frac{1}{2} p q+1-\frac{1}{2}=\frac{1}{2} p q+\frac{1}{2}$

$=\frac{1}{2}(p q+1)$

Thus, the sum of first pq terms of the $A.P.$ is $=\frac{1}{2}(p q+1)$

Similar Questions

સમાંતર શ્રેણી $4 + 9 + 14 +19 +.......$ ના $15$  માં પદની સંખ્યા......છે.

જો કોઈ $\alpha$ માટે $3^{2 \sin 2 \alpha-1},14$ અને $3^{4-2 \sin 2 \alpha}$ એ પ્રથમ ત્રણ સમાંતર શ્રેણીના પદો હોય તો તે સમાંતર શ્રેણીનું છઠ્ઠું પદ ............ થાય 

  • [JEE MAIN 2020]

 $\Delta ABC$ માં જો $a, b, c$ એ સમાંતર શ્રેણીમાં હોય તો નીચેનામાંથી અસત્ય વિધાન મેળવો. 

અચળ $p, q$ માટે જે સમાંતર શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો $\left(p n+q n^{2}\right),$ હોય, તેનો સામાન્ય તફાવત શોધો. છે.

$m \neq n$ માટે કોઈક સમાંતર શ્રેણીનું $m$ મું પદ $n$ અને $n$ મું પદ $m$ હોય, તો તેનું $p$ મું પદ શોધો.