જો સમાંતર શ્રેણીના $p$ માં પદ $q$ માં પદ વચ્ચેનો સમાંતર મધ્યક એ તેના $r$ માં અને $s$ માં પદ વચ્ચે નાં સમાંતર મધ્યક જેટલો હોય, તો $p + q = ......$
$r + s$
$r + s - 1$
$r + s + 1$
$r + s - 2$
$1$ થી $100 $ વચ્ચેની $2$ અથવા $5$ વડે વિભાજ્ય સંખ્યાઓનો સરવાળો શોધો. છે.
અહી $a_{1}, a_{2}, \ldots \ldots, a_{21}$ એ સમાંતર શ્રેણીમાં છે કે જેથી $\sum_{n=1}^{20} \frac{1}{a_{n} a_{n+1}}=\frac{4}{9}$ છે. જો શ્રેણીનાં પદોનો સરવાળો $189,$ હોય તો $a_{6} \mathrm{a}_{16}$ ની કિમંત મેળવો.
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=n \frac{n^{2}+5}{4}$
જો $x, y, z$ સમાંતર શ્રેણીમાં હોય અને $tan^{-1}x, tan^{-1}y$ અને $tan^{-1}z$ પણ સમાંતર શ્રેણીમાં હોય, તો......
જો સમાંતર શ્રેણી નું $p$ મું પદ $q $અને $q $મું પદ $p$ હોય તો તેનું $n$ મું પદ ......છે.