English
Hindi
8. Sequences and Series
easy

જો સમાંતર શ્રેણીનું $n$  મું પદ $\frac{(2n + 1)}{3}$  હોય,તો તેના $19 $ પદોનો સરવાળો કેટલો થાય ?

A

$131 $

B

$132 $

C

$133$

D

$134$

Solution

અહી ${T_n}\, = \,\,\frac{1}{3}\,(2n\,\, + \,\,1)\,\,n\,\, = \,\,1,\,\,2,\,\,3,\,\,4,\,\,5,\,\,6\,\,……\,\,$ મુક્તા, આપણે પ્રથમ  ઓગણીસ પદ મેળવિશુ. 

તેથી સરવાળો ${\text{1}}\,\, + \,\,\frac{{\text{5}}}{{\text{3}}}\,\, + \,\,\frac{7}{3}\,\, + \,\,3\,\, + \,\,…….\,$ થાય 

${\text{a}}\,\, = \,\,{\text{1}}\,\,{\text{,}}\,\,\,{\text{d}}\,\, = \,\,\frac{{\text{2}}}{{\text{3}}}$

${T_{19}}\, = \,\,\,\frac{{19}}{2}\,\,\left[ {2\,\, + \,\,(18)\frac{2}{3}} \right]\,\, = \,\,133$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.