જો $\left( {_{\,\,\,4}^{n - 1}} \right),{\text{ }}\left( {_{\,\,\,5}^{n - 1}} \right)\,$ અને $\left( {_{\,\,\,6}^{n - 1}} \right)\,$ સમાંતર શ્રેણીમાં હોય તો................. મળે
$\left( {_{\,\,\,6}^{n + 1}} \right) = 2\left( {_{\,\,\,5}^{n - 1}} \right)$
$2\left( {_{\,\,\,\,6}^{n + 1}} \right) = \left( {_{\,\,\,5}^{n - 1}} \right)$
$\left( {_{\,\,\,\,6}^{n + 1}} \right) = 4\left( {_{\,\,\,\,5}^{n - 1}} \right)$
$4\left( {_{\,\,\,\,6}^{n + 1}} \right) = \left( {_{\,\,\,5}^{n - 1}} \right)$
એક રેખા પર છ $‘+’$ અને ચાર $‘-’$ ની નિશાની રાખવામાં આવે છે કે જેથી કોઇપણ બે $‘-’$ નિશાની પાસપાસે ન આવે તો આવી કુલ ગોઠવણી મેળવો.
જો $n \geq 2$ એ ધન પૂર્ણાંક હોય, તો શ્રેઢી ${ }^{ n +1} C _{2}+2\left({ }^{2} C _{2}+{ }^{3} C _{2}+{ }^{4} C _{2}+\ldots+{ }^{ n } C _{2}\right)$ નો સરવાળો ...... છે.
પાંચ ભિન્ન કલરના દડાને ત્રણ અલગ આકારની પેટીમાં મૂકવના છે.દરેક પેટી પાંચએ દડાને સમાવી શકે છે.તો દડાને કેટલી રીતે ગેાઠવી શકાય કે જેથી કોઇપણ પેટી ખાલી ના રહે.
$9$ કુમારી અને $4$ કુમારીઓમાંથી $7$ સભ્યોની સમિતિ બનાવવી છે. જેમાં બરાબર $3$ કુમારીઓ હોય એવી કેટલી સમિતિની રચના થઈ શકે ?
ભિન્ન રંગના પાંચ દડાને ભિન્ન કદના ત્રણ ખોખાંમાં મૂકવામાં આવે, દરેક ખોખું બધાં જ પાંચ દડા સમાવી શકે છે. એક પણ ખોખું ખાલી ન રહે તેવી રીતે દડા કેટલી રીતે મૂકી શકાય (ખોખામાં ક્રમ દર્શાવેલ નથી).