$8$ વ્યક્તિ એક રેખામાં એવી રીતે ઊભા રહી શકે જેથી બે ચોક્કસ વ્યક્તિ $A$ અને $B$ ની વચ્ચે હંમેશા બે વ્યક્તિ આવે તો કેટલી ભિન્ન રીતે ઊભા રાખી શકાય ?
$60 (5 !)$
$15 (4 !) × (5!)$
$4 ! × 5 !$
આપેલ પૈકી એકપણ નહિ
સમતલમાંનાં $n$ બિંદુઓ પૈકી $p$ બિંદુઓ સમરેખ છે. (બાકીના બિંદુઓમાનાં કોઇપણ ત્રણ બિંદુઓ સમરેખ નથી) બિંદુઓમાંથી પસાર થતી ......રેખાઓ મળે.
જો $^n{C_{r - 1}} = 36,{\;^n}{C_r} = 84$ અને $^n{C_{r + 1}} = 126$ ,તો $r$ મેળવો.
$m$ પુરૂષ અને $n$ સ્ત્રી ને એક હારમાં બેસાડવામાં આવે છે કે જેથી કોઇપણ બે સ્ત્રી પાસપાસે ન આવે.જો$m > n$,તો કુલ કેટલી રીતે બેસાડી શકાય.
$4$ શ્રીમાન અને $6$ શ્રીમતી વડે $5$ સભ્યોની એક સમિતી કેટલી રીતે બનાવી શકાય, જેમાં શ્રીમાનોની સંખ્યા વધુ હોય ?
જો $S = \left\{ {1,2,3, \ldots ,12} \right\}$ ને ત્રણ ગણ $A,B$ અને $ C$ માં સમાન રીતે વિભાજિત કરવામાં આવે છે કે જેથી $A \cup B \cup C = S$ અને $A \cap B = B \cap C = C \cap A = \emptyset $ થાય તો $S$ ના ભાગ કેટલી રીતે કરી શકાય.