English
Hindi
6.Permutation and Combination
normal

$\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) \div \left( {\begin{array}{*{20}{c}}n\\{n - 1}\end{array}} \right) = .........$

A

$\frac{{n - r}}{r}$

B

$\frac{{n + r - 1}}{r}$

C

$\frac{{n - r + 1}}{r}$

D

$\frac{{n - r - 1}}{r}$

Solution

$\left( {\begin{array}{*{20}{c}}
  n \\ 
  r 
\end{array}} \right) \div \left( {\begin{array}{*{20}{c}}
  n \\ 
  {n – 1} 
\end{array}} \right)$

$ = \frac{{n\,!}}{{r\,!\,(n – r)\,!}} \div \,\frac{{n\,!}}{{(r – 1)!\,(n – r + 1)\,!}}\,\,$

$\, = \frac{{n\,!}}{{r(r – 1)\,!\,(n – r)\,!}}.\,\frac{{(r – 1)!\,(n – r + 1)(n – r)\,!}}{{n\,!}}$

$ = \frac{{n – r + 1}}{r}$

 

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.