સમીકરણ ${(5\, + \,2\sqrt 6 )^{{x^3} - 3}}\, + \,{(5\, - \,2\sqrt 6 )^{{x^2} - 3}}\, = \,10$ ના વાસ્તવિક ઉકેલોની સંખ્યા કેટલી હોય ?

  • A

    $2$

  • B

    $4$

  • C

    $6$

  • D

    આપેલ પૈકી એકપણ નહિ.

Similar Questions

જો $a, b, c$ એ ત્રિકોણની ત્રણ બાજુઓ છે. જે $\left(a^2+\right.$ $\left.b^2\right) x^2-2 b(a+c) \cdot x+\left(b^2+c^2\right)=0$ નું સમાધાન કરે છે. જો $x$ ના શક્ય ઉકેલોનો ગણ $(\alpha, \beta)$ છે. તો $12\left(\alpha^2+\beta^2\right)=$............................

  • [JEE MAIN 2024]

ધારોકે $\lambda \in R$ અને ધારોકે સમીકરણ $E$ એ $|x|^2-2|x|+|\lambda-3|=0$ છે. તો ગણ $S =\{x+\lambda: x$ એ $E$ નો પૂર્ણાંક ઉકેલ છે; નો મહતમ ધટક $.............$ છે.

  • [JEE MAIN 2023]

જો $a$ ,$b$, $c$ , $d$ , $e$ એ પાંચ સંખ્યાઓ સમીકરણ સંહિતાઓ ને સંતોષે 

                            $2a + b + c + d + e = 6$
                            $a + 2b + c + d + e = 12$
                            $a + b + 2c + d + e = 24$
                            $a + b + c + 2d + e = 48$
                            $a + b + c + d + 2e = 96$ ,

તો $|c|$ ની કિમત મેળવો 

સમીકરણ $\mathrm{e}^{4 \mathrm{x}}+\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{\mathrm{x}}+1=0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.

  • [JEE MAIN 2020]

જો $\alpha ,\beta,\gamma$ એ સમીકરણ $x^3 + 2x -5 = 0$ ના ઉકેલો હોય અને સમીકરણ  $x^3 + bx^2 + cx + d = 0$ ના ઉકેલો $2 \alpha + 1, 2 \beta + 1, 2 \gamma + 1$ હોય તો $|b + c + d|$ ની કિમત મેળવો (જ્યાં $b,c,d$ નો સરવાળો અવિભાજય સંખ્યા છે )