જો $\alpha$ અને $\beta$ એ સમીકરણ $5 x^{2}+6 x-2=0$ ના બીજો હોય અને $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ હોય તો
$5 \mathrm{S}_{6}+6 \mathrm{S}_{5}=2 \mathrm{S}_{4}$
$5 \mathrm{S}_{6}+6 \mathrm{S}_{5}+2 \mathrm{S}_{4}=0$
$6 \mathrm{S}_{6}+5 \mathrm{S}_{5}+2 \mathrm{S}_{4}=0$
$6 \mathrm{S}_{6}+5 \mathrm{S}_{5}=2 \mathrm{S}_{4}$
જો $\alpha $ અને $\beta $ દ્રીઘાત સમીકરણ $x^2 + x\, sin\,\theta -2sin\,\theta = 0$, $\theta \in \left( {0,\frac{\pi }{2}} \right)$ ના ઉકેલો હોય તો $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha - \beta } \right)}^{24}}}}$ ની કિમત મેળવો.
સમીકરણ ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}\,$ માં ${\rm{x}}$ કિંમત =.....
ધારો કે $\alpha$ અને $\beta$ બે વાસ્તવિક સંખ્યાઓ છે કે જેથી $\alpha+\beta=1$ અને $\alpha \beta=-1 .$ જો કોઈક પૂર્ણાંક $n \geq 1$ માટે ધારો કે $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ અને $p _{ n +1}=29$ હોય, તો $p _{ n }^{2}$ નું મૂલ્ય .... થાય.
જો $x^3 + 5x^2 - 7x - 1 = 0$ ના બીજ $\alpha$, $\beta$, $\gamma$ હોય, તો કયા સમીકરણના બીજ $\alpha$$\beta$, $\beta$$\gamma$, $\gamma$$\alpha$ હોય ?
સમીકરણ $2^{x + 2} 27^{x/(x - 1)} = 9$ ના બીજ મેળવો.