- Home
- Standard 11
- Mathematics
જો $\alpha$ અને $\beta$ એ સમીકરણ $5 x^{2}+6 x-2=0$ ના બીજો હોય અને $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ હોય તો
$5 \mathrm{S}_{6}+6 \mathrm{S}_{5}=2 \mathrm{S}_{4}$
$5 \mathrm{S}_{6}+6 \mathrm{S}_{5}+2 \mathrm{S}_{4}=0$
$6 \mathrm{S}_{6}+5 \mathrm{S}_{5}+2 \mathrm{S}_{4}=0$
$6 \mathrm{S}_{6}+5 \mathrm{S}_{5}=2 \mathrm{S}_{4}$
Solution
$\alpha$ and $\beta$ are roots of $5 x^{2}+6 x-2=0$
$\Rightarrow 5 \alpha^{2}+6 \alpha-2=0$
$\Rightarrow 5 \alpha^{n+2}+6 \alpha^{n+1}-2 \alpha^{n}=0 \quad \ldots(1)$
(By multiplying $\left.\alpha^{n}\right)$
Similarly $5 \beta^{n+2}+6 \beta^{n+1}-2 \beta^{n}=0 \quad \ldots(2)$
By adding (1)$\&(2)$
$5 \mathrm{S}_{\mathrm{n}+2}+6 \mathrm{S}_{\mathrm{n}+1}-2 \mathrm{S}_{\mathrm{n}}=0$
For $n=4$
$5 \mathrm{S}_{6}+6 \mathrm{S}_{5}=2 \mathrm{S}_{4}$