4-2.Quadratic Equations and Inequations
medium

જો $\alpha$ અને $\beta$ એ સમીકરણ $5 x^{2}+6 x-2=0$ ના બીજો હોય અને $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ હોય તો 

A

$5 \mathrm{S}_{6}+6 \mathrm{S}_{5}=2 \mathrm{S}_{4}$

B

$5 \mathrm{S}_{6}+6 \mathrm{S}_{5}+2 \mathrm{S}_{4}=0$

C

$6 \mathrm{S}_{6}+5 \mathrm{S}_{5}+2 \mathrm{S}_{4}=0$

D

$6 \mathrm{S}_{6}+5 \mathrm{S}_{5}=2 \mathrm{S}_{4}$

(JEE MAIN-2020)

Solution

$\alpha$ and $\beta$ are roots of $5 x^{2}+6 x-2=0$

$\Rightarrow 5 \alpha^{2}+6 \alpha-2=0$

$\Rightarrow 5 \alpha^{n+2}+6 \alpha^{n+1}-2 \alpha^{n}=0 \quad \ldots(1)$

(By multiplying $\left.\alpha^{n}\right)$

Similarly $5 \beta^{n+2}+6 \beta^{n+1}-2 \beta^{n}=0 \quad \ldots(2)$

By adding (1)$\&(2)$

$5 \mathrm{S}_{\mathrm{n}+2}+6 \mathrm{S}_{\mathrm{n}+1}-2 \mathrm{S}_{\mathrm{n}}=0$

For $n=4$

$5 \mathrm{S}_{6}+6 \mathrm{S}_{5}=2 \mathrm{S}_{4}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.