જો $x$ વાસ્તવિક હોય, તો કયા $3x^2 + 14x + 11 > 0$ થાય ?
$x\, < \, - \frac{3}{2}$
$x\,\, < \,\, - \,\,\frac{{11}}{3}\,\,or\,\,x\,\, > \,\, - 1$
$x > -2$
ક્યારેય નહિ.
જો $x$ કોઇ વાસ્તવિક સંખ્યા હોય તો $\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}$ ની મહતમ કિંમત . . . હોય . .
સમીકરણ $\left| {\sqrt x - 2} \right| + \sqrt x \left( {\sqrt x - 4} \right) + 2 = 0\left( {x > 0} \right)$ ના ઉકેલોનો સરવાળો ..... થાય
જો $y = ax^3 + bx^2 + cx + d$ નો ગ્રાફ રેખા $x = k$ ને સંમિત હોય તો
જો $\alpha , \beta $ એ સમીકરણ $x^2 - 2x + 4 = 0$ ના બીજો હોય તો $\alpha ^n +\beta ^n$ ની કિમત મેળવો
સમીકરણ $|x{|^2}$-$3|x| + 2 = 0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.