સમીકરણ $e^{\sin x}-2 e^{-\sin x}=2$ ના ઉકેલોની સંખ્યા મેળવો.
$2$
more than $2$
$1$
$0$
જો અસમતા $kx^2 -2x + k \geq 0$ ને ઓછામાં ઓછા એક વાસ્તવિક $'x'$ માટે હોય તો $'k'$ ની કિમતોનો ગણ મેળવો
જો સમીકરણ ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ ના બીજનો ગુણાકાર $7$ હોય તો તેમના બીજ વાસ્તવિક છે કે જયાં
જો $\alpha $ અને $\beta $ એ દ્રીઘાત સમીકરણ ${x^2}\,\sin \,\theta - x\,\left( {\sin \,\theta \cos \,\,\theta + 1} \right) + \cos \,\theta = 0\,\left( {0 < \theta < {{45}^o}} \right)$ ના ઉકેલો હોય અને $\alpha < \beta $ તો $\sum\limits_{n = 0}^\infty {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ = ......
સમીકરણ $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$,નાં ભિન્ન વાસ્તવિક બીજોની સંખ્યા............ છે.
સમીકરણ $\left[ {{x^2}} \right] - 2x + 1 = 0$ ના ઉકેલોનો સરવાળો મેળવો
(જ્યાં $[.]$ એ મહત્તમ પૂર્ણાક વિધેય છે)