સમીકરણ ${\left( {\frac{5}{7}} \right)^x}\, = \, - {x^2} + 2x\, - \,3$ વાસ્તવિક ઉકેલોની સંખ્યા કેટલી હોય ?
$2$
$0$
$1$
આપેલ પૈકી એકપણ નહિ.
જો સમીકરણ $y = ax^2 -bx + c$ નો ગ્રાફ નીચે મુજબ હોય તો $a$, $b$, $c$ ના ચિહ્નો અનુક્રમે ......... થાય
જો $\alpha ,\beta ,\gamma$ એ સમીકરણ $x^3 - x - 2 = 0$ ના બીજો હોય તો $\alpha^5 + \beta^5 + \gamma^5$ ની કિમત મેળવો
જો $\alpha ,\beta$ એ સમીકરણ $x^2 -ax + b = 0$ ના ઉકેલો હોય અને $\alpha^n + \beta^n = V_n$, હોય તો
ધારોકે $\lambda \in R$ અને ધારોકે સમીકરણ $E$ એ $|x|^2-2|x|+|\lambda-3|=0$ છે. તો ગણ $S =\{x+\lambda: x$ એ $E$ નો પૂર્ણાંક ઉકેલ છે; નો મહતમ ધટક $.............$ છે.
જો $x$ વાસ્તવિક હોય, તો પદાવલિ $\frac{{{x^2}\, - \,3x\, + \,4}}{{{x^2} + 3x\, + \,4}}$ નું મહત્તમ અને ન્યૂનત્તમ મૂલ્ય કેટલું થાય ?