સમીકરણ ${\left( {\frac{5}{7}} \right)^x}\, = \, - {x^2} + 2x\, - \,3$ વાસ્તવિક ઉકેલોની સંખ્યા કેટલી હોય ?
$2$
$0$
$1$
આપેલ પૈકી એકપણ નહિ.
સમીકરણ $9 x^{2}-18|x|+5=0$ ના બીજોનો ગુણાકાર .......... થાય
જો $\alpha ,\beta,\gamma$ એ સમીકરણ $x^3 + 2x -5 = 0$ ના ઉકેલો હોય અને સમીકરણ $x^3 + bx^2 + cx + d = 0$ ના ઉકેલો $2 \alpha + 1, 2 \beta + 1, 2 \gamma + 1$ હોય તો $|b + c + d|$ ની કિમત મેળવો (જ્યાં $b,c,d$ નો સરવાળો અવિભાજય સંખ્યા છે )
જો $\frac{{2x}}{{2{x^2} + 5x + 2}}$>$\frac{1}{{x + 1}}$ ,તો . . . .
સમીકરણ $x^2 + 5 | x | + 4 = 0$ ના વાસ્તવિક બીજ કયા છે ?
જો સમીકરણ ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ ના બીજનો ગુણાકાર $7$ હોય તો તેમના બીજ વાસ્તવિક છે કે જયાં