સમીકરણ $\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0, x\,>\,0$ ના ઉકેલની સંખ્યા મેળવો.
$2$
$4$
$6$
$1$
જો $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5,\,$ તો $\,\,{\rm{x = \ldots }}..{\rm{ }}$
ધારોકે $\alpha, \beta, \gamma$ એ સમીકરણ $x^3+b x+c=0$ ના ત્રણ બીજ છે. જો $\beta \gamma=1=-\alpha$ હોય, તો $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3=..............$
ધારો કે $\alpha_1, \alpha_2, \ldots, \alpha_7$ એ સમીકરણ $x^7+3 x^5-13 x^3-15 x=0$ નાં બીજ છે અને $\left|a_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$ તો $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6=......$
જો $x,\;y,\;z$ એ વાસ્તવિક અને ભિન્ન હોય તો $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - zxy$ એ હંમેશા . . .
જો $ax^3 + bx^2 + cx + d$ ના એક અવયવ $x^2 + x + 1$ હોય, તો $ax^3 + bx^2 + cx + d = 0$ નું વાસ્તવિક બીજ કયું હોય ?