સમીકરણ $|x^2 -2|x||$ = $2^x$ ના કેટલા ઉકેલો મળે?
$1$
$2$
$3$
$4$
ધારો કે $\alpha, \beta ; \alpha>\beta$ એ સમીકરણ $x^2-\sqrt{2} x-\sqrt{3}=0$ ના બીજ છે. ધારો કે $\mathrm{P}_n=\alpha^n-\beta^n, n \in \mathbb{N}$. તો $(11 \sqrt{3}-10 \sqrt{2}) \mathrm{P}_{10}+(11 \sqrt{2}+10) \mathrm{P}_{11}-11 \mathrm{P}_{12}=$ .............
જો $\alpha$ અને $\beta$ એ સમીકરણ $5 x^{2}+6 x-2=0$ ના બીજો હોય અને $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ હોય તો
સમીકરણ $\left|x^2-8 x+15\right|-2 x+7=0$ ના તમામ બીજનો સરવાળો $...........$ છે.
સમીકરણ $(8)^{2 x}-16 \cdot(8)^x+48=0$ નાં તમામ ઉકેલો નો સરવાળો ............ છે.
સમીકરણ $9 x^{2}-18|x|+5=0$ ના બીજોનો ગુણાકાર .......... થાય