English
Hindi
4-2.Quadratic Equations and Inequations
hard

જો $x^3 + 5x^2 - 7x - 1 = 0$ ના બીજ $\alpha$, $\beta$, $\gamma$ હોય, તો કયા સમીકરણના બીજ $\alpha$$\beta$, $\beta$$\gamma$, $\gamma$$\alpha$ હોય ?

A

$x^3 - 7x^2+ 5x + 1 = 0$

B

$x^3 + 7x^2 - 5x - 1 = 0$

C

$x^3 + 5x^2 + 7x + 1 = 0$

D

આપેલ પૈકી એકપણ નહિ.

Solution

${x^3}\, + \,\,5{x^2}\, – \,\,7x\,\, – 1\,\, = \,\,0$

$\alpha ,\,\,\beta ,\,\,\gamma \,\, \to \,$ બીજ $ \Rightarrow \,\,\alpha \beta \gamma \,\, = \,\,1$

એવું સમીકરણ કે જેના બીજ $\frac{{\rm{1}}}{\alpha }\,{\rm{,}}\,\,\frac{{\rm{1}}}{\beta }\,{\rm{,}}\,\,\frac{{\rm{1}}}{\gamma }$ હોય,તો

$\frac{{\rm{1}}}{{{{\rm{x}}^{\rm{3}}}}}\,\, + \,\,\frac{5}{{{x^2}}}\,\, – \,\,\frac{7}{x}\,\, – \,\,1\,\, = \,\,0$ થાય છે.

${\rm{ – }}{{\rm{x}}^{\rm{3}}}\, – \,\,7{x^2}\, + \,\,5x\,\, + \,\,1\,\, = \,\,0\,$ 

$ \Rightarrow \,\,\,{x^3}\, + \,\,7{x^2}\, – \,\,5x\, – \,\,1\,\, = \,\,0$

આપણે આમ લખી શકીએ કે

$\alpha \beta ,\,\,\beta \gamma ,\,\,\gamma \alpha $ 

$\frac{{\alpha \beta }}{{\alpha \beta \gamma }}\,\,\,.\,\,\,\frac{{\beta \gamma }}{{\alpha \beta \gamma }}\,\,\,.\,\,\,\frac{{\gamma \alpha }}{{\alpha \beta \gamma }}\,\,\,\,\,\,\,$   ($\,\,\,\,\alpha \beta \gamma \,\, = \,\,1$)

$\frac{1}{\gamma }\,,\,\,\frac{1}{\alpha }\,,\,\,\frac{1}{\beta }$

તેથી, સમીકરણ કે જેના બીજ $\,\alpha \beta \,{\rm{,}}\,\,\beta \gamma \,{\rm{,}}\,\,\gamma \alpha \,\,$

$ \Rightarrow \,\,\frac{1}{\gamma }\,,\,\,\frac{1}{\alpha }\,,\,\,\frac{1}{\beta }\,$ હોય , તો 

${{\rm{x}}^{\rm{3}}}\, + \,\,7{x^2}\, – \,\,5x\,\, – \,\,1\,\, = \,\,0$ થાય છે.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.