- Home
- Standard 11
- Mathematics
જો $x^3 + 5x^2 - 7x - 1 = 0$ ના બીજ $\alpha$, $\beta$, $\gamma$ હોય, તો કયા સમીકરણના બીજ $\alpha$$\beta$, $\beta$$\gamma$, $\gamma$$\alpha$ હોય ?
$x^3 - 7x^2+ 5x + 1 = 0$
$x^3 + 7x^2 - 5x - 1 = 0$
$x^3 + 5x^2 + 7x + 1 = 0$
આપેલ પૈકી એકપણ નહિ.
Solution
${x^3}\, + \,\,5{x^2}\, – \,\,7x\,\, – 1\,\, = \,\,0$
$\alpha ,\,\,\beta ,\,\,\gamma \,\, \to \,$ બીજ $ \Rightarrow \,\,\alpha \beta \gamma \,\, = \,\,1$
એવું સમીકરણ કે જેના બીજ $\frac{{\rm{1}}}{\alpha }\,{\rm{,}}\,\,\frac{{\rm{1}}}{\beta }\,{\rm{,}}\,\,\frac{{\rm{1}}}{\gamma }$ હોય,તો
$\frac{{\rm{1}}}{{{{\rm{x}}^{\rm{3}}}}}\,\, + \,\,\frac{5}{{{x^2}}}\,\, – \,\,\frac{7}{x}\,\, – \,\,1\,\, = \,\,0$ થાય છે.
${\rm{ – }}{{\rm{x}}^{\rm{3}}}\, – \,\,7{x^2}\, + \,\,5x\,\, + \,\,1\,\, = \,\,0\,$
$ \Rightarrow \,\,\,{x^3}\, + \,\,7{x^2}\, – \,\,5x\, – \,\,1\,\, = \,\,0$
આપણે આમ લખી શકીએ કે
$\alpha \beta ,\,\,\beta \gamma ,\,\,\gamma \alpha $
$\frac{{\alpha \beta }}{{\alpha \beta \gamma }}\,\,\,.\,\,\,\frac{{\beta \gamma }}{{\alpha \beta \gamma }}\,\,\,.\,\,\,\frac{{\gamma \alpha }}{{\alpha \beta \gamma }}\,\,\,\,\,\,\,$ ($\,\,\,\,\alpha \beta \gamma \,\, = \,\,1$)
$\frac{1}{\gamma }\,,\,\,\frac{1}{\alpha }\,,\,\,\frac{1}{\beta }$
તેથી, સમીકરણ કે જેના બીજ $\,\alpha \beta \,{\rm{,}}\,\,\beta \gamma \,{\rm{,}}\,\,\gamma \alpha \,\,$
$ \Rightarrow \,\,\frac{1}{\gamma }\,,\,\,\frac{1}{\alpha }\,,\,\,\frac{1}{\beta }\,$ હોય , તો
${{\rm{x}}^{\rm{3}}}\, + \,\,7{x^2}\, – \,\,5x\,\, – \,\,1\,\, = \,\,0$ થાય છે.