જો $x^3 + 5x^2 - 7x - 1 = 0$ ના બીજ $\alpha$, $\beta$, $\gamma$ હોય, તો કયા સમીકરણના બીજ $\alpha$$\beta$, $\beta$$\gamma$, $\gamma$$\alpha$ હોય ?

  • A

    $x^3 - 7x^2+ 5x + 1 = 0$

  • B

    $x^3 + 7x^2 - 5x - 1 = 0$

  • C

    $x^3 + 5x^2 + 7x + 1 = 0$

  • D

    આપેલ પૈકી એકપણ નહિ.

Similar Questions

સમીકરણ ${(5\, + \,2\sqrt 6 )^{{x^3} - 3}}\, + \,{(5\, - \,2\sqrt 6 )^{{x^2} - 3}}\, = \,10$ ના વાસ્તવિક ઉકેલોની સંખ્યા કેટલી હોય ?

અસમતા  $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ નો ઉકેલગણ મેળવો 

જો $x$ એ વાસ્તવિક હોય તો વિધેેય $\frac{{(x - a)(x - b)}}{{(x - c)}}$ એ બધીજ વાસ્તવિક કિંમતો ધારણ કરી શકે છે જે  . . . શરત આપવમાં આવે .

  • [IIT 1984]

જો સમીકરણ $x^3 - x - 1 = 0$ ના બીજ $\alpha$, $\beta$, $\gamma$ હોય, તો $\left( {\frac{{1\,\, + \,\,\alpha }}{{1\,\, - \,\,\alpha }}} \right)\left( {\frac{{1\,\, + \,\,\beta }}{{1\,\, - \,\,\beta }}} \right)\left( {\frac{{1\,\, + \,\,\gamma }}{{1\,\, - \,\,\gamma }}} \right)$ નું મૂલ્ય કેટલું થાય ?

એક ત્રિઘાત સમીકરણમાં $x^2$ નો સહગુણક શૂન્ય અને બાકીના સહગુણક વાસ્તવિક અને એક ઉકેલ $\alpha = 3 + 4\, i$ તથા બાકીના ઉકેલો $\beta$ અને $\gamma$ હોય તો $\alpha \beta \gamma$ ની કિમત મેળવો