જો સમીકરણનો $ax^3 + bx + c$ નો એક ઘટક $x^2 + px + 1$ હોય, તો.....
$a^2 + c^2 = -ab$
$a^2 - c^2 = -ab$
$a^2 - c^2 = ab$
આપેલ પૈકી એકપણ નહિ.
જો $a$ , $b$ , $c$ એ સમીકરણ $x^3 + 8x + 1 = 0$ ના બીજો હોય તો
$\frac{{bc}}{{(8b + 1)(8c + 1)}} + \frac{{ac}}{{(8a + 1)(8c + 1)}} + \frac{{ab}}{{(8a + 1)(8b + 1)}}$ ની કિમત મેળવો
જો $\alpha$ અને $\beta$ એ સમીકરણ $x^3 + 3x^2 -1 = 0$ ના બે ભિન્ન બીજો હોય તો ક્યાં સમીકરણનો ઉકેલ $(\alpha \beta )$ થાય ?
અહી $\alpha, \beta(\alpha>\beta)$ એ દ્રીઘાત સમીકરણ $x ^{2}- x -4=0$ ના બીજ છે. જો $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$ તો $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ ની કિમંત $......$ થાય.
ધારો કે $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. તો $\mathrm{S}$ માં સભ્યો ની સંખ્યા ____________ છે.
સમીકરણ $|x - 2|^2 + |x - 2| - 6 = 0$ નાં બીજ ......છે.