જો $S$ એ બધા $\alpha \in R$ નો ગણ છે કે જેથી $cos\,2 x + \alpha \,sin\, x = 2\alpha -7$ ને ઉકેલગણ મળે તો $S$ =
$[3, 7]$
$R$
$[2, 6]$
$[1, 4]$
જો $a$ અને $b$ એ સમીકરણ $x^2-7 x-1=0$ નાં બીજ હોય, તો $\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}$ નું મૂલ્ય $......$ છે.
જો ${\rm{x}}$ બરાબર શું થાય, તો $\frac{{8{x^2}\, + \,16x\, - \,51}}{{(2x - \,3)\,(x\, + \,4)}}\, > \,3\,\, = \,\,\,......$
અહી $\alpha, \beta(\alpha>\beta)$ એ દ્રીઘાત સમીકરણ $x ^{2}- x -4=0$ ના બીજ છે. જો $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$ તો $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ ની કિમંત $......$ થાય.
સમીકરણ $x^{4}-3 x^{3}-2 x^{2}+3 x+1=10$ નાં તમામ બીજ ના ધનોંનો સરવાળો $\dots\dots\dots$ છે.
જો $a \in R$ હોય અને સમીકરણ $ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$ ને પૂર્ણાંક ઉકેલ ન હોય તો $a$ શકય કિંમતો . . . અંતરાલમાં હોય . .