- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
hard
જો $S$ એ બધા $\alpha \in R$ નો ગણ છે કે જેથી $cos\,2 x + \alpha \,sin\, x = 2\alpha -7$ ને ઉકેલગણ મળે તો $S$ =
A
$[3, 7]$
B
$R$
C
$[2, 6]$
D
$[1, 4]$
(JEE MAIN-2019)
Solution
Given, $\cos 2 x+2 \sin x=2 \alpha-7$
$\Rightarrow 1-2 \sin ^{2} x+\alpha \sin x=2 \alpha-7$
$\Rightarrow 2 \sin ^{2} x-\alpha \sin x+2 \alpha-8=0$
$\Rightarrow \sin x=\frac{\alpha \pm \sqrt{\alpha^{2}-8(2 \alpha-8)}}{4}$
$\Rightarrow \sin x=\frac{\alpha \pm(\alpha-8)}{4}$
$\Rightarrow \sin x=\frac{\alpha+\alpha-8}{4}, \frac{\alpha-\alpha+8}{4}$
$\sin x=2$ (Not possible)
For solution $-1 \leq \frac{2 \alpha-8}{4} \leq 1$
$-4 \leq 2 \alpha-8 \leq 4$
$\Rightarrow 4 \leq 2 \alpha \leq 12$
$\Rightarrow \alpha \in[2,6]$
Standard 11
Mathematics