જો $S$ એ બધા $\alpha  \in  R$ નો ગણ છે કે જેથી $cos\,2 x + \alpha  \,sin\, x = 2\alpha  -7$ ને ઉકેલગણ મળે તો $S$ = 

  • [JEE MAIN 2019]
  • A

    $[3, 7]$

  • B

    $R$

  • C

    $[2, 6]$

  • D

    $[1, 4]$

Similar Questions

જો $\alpha , \beta , \gamma$ એ સમીકરણ $x^3 + qx -r = 0$ ના ઉકેલો હોય તો ક્યાં સમીકરણના ઉકેલો $\left( {\beta \gamma  + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha  + \frac{1}{\beta }} \right),\,\left( {\alpha \beta  + \frac{1}{\gamma }} \right)$ થાય ?

જો $\alpha $ અને $\beta $ એ દ્રીઘાત સમીકરણ ${x^2}\,\sin \,\theta  - x\,\left( {\sin \,\theta \cos \,\,\theta  + 1} \right) + \cos \,\theta  = 0\,\left( {0 < \theta  < {{45}^o}} \right)$ ના ઉકેલો હોય અને $\alpha  < \beta $ તો $\sum\limits_{n = 0}^\infty  {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ = ......

  • [JEE MAIN 2019]

$x$ ના બધા વાસ્તવિક મૂલ્યો માટે પદાવલી $\frac{x}{{{x^2} - 5x + 9}}$ મહત્તમ મૂલ્ય કેટલું થાય ?

જો $a$ , $b$ , $c$ એ સમીકરણ $x^3 + 8x + 1 = 0$ ના બીજો હોય તો  

 $\frac{{bc}}{{(8b + 1)(8c + 1)}} + \frac{{ac}}{{(8a + 1)(8c + 1)}} + \frac{{ab}}{{(8a + 1)(8b + 1)}}$ ની કિમત મેળવો 

$\sin ^2 x+\left(2+2 x-x^2\right) \sin x-3(x-1)^2=0,-\pi \leq x \leq \pi$ ના ઉકેલો ની સંખ્યા ............ છે.

  • [JEE MAIN 2024]