જો $S$ એ બધા $\alpha \in R$ નો ગણ છે કે જેથી $cos\,2 x + \alpha \,sin\, x = 2\alpha -7$ ને ઉકેલગણ મળે તો $S$ =
$[3, 7]$
$R$
$[2, 6]$
$[1, 4]$
જો $\alpha , \beta , \gamma$ એ સમીકરણ $x^3 + qx -r = 0$ ના ઉકેલો હોય તો ક્યાં સમીકરણના ઉકેલો $\left( {\beta \gamma + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha + \frac{1}{\beta }} \right),\,\left( {\alpha \beta + \frac{1}{\gamma }} \right)$ થાય ?
જો $\alpha $ અને $\beta $ એ દ્રીઘાત સમીકરણ ${x^2}\,\sin \,\theta - x\,\left( {\sin \,\theta \cos \,\,\theta + 1} \right) + \cos \,\theta = 0\,\left( {0 < \theta < {{45}^o}} \right)$ ના ઉકેલો હોય અને $\alpha < \beta $ તો $\sum\limits_{n = 0}^\infty {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ = ......
$x$ ના બધા વાસ્તવિક મૂલ્યો માટે પદાવલી $\frac{x}{{{x^2} - 5x + 9}}$ મહત્તમ મૂલ્ય કેટલું થાય ?
જો $a$ , $b$ , $c$ એ સમીકરણ $x^3 + 8x + 1 = 0$ ના બીજો હોય તો
$\frac{{bc}}{{(8b + 1)(8c + 1)}} + \frac{{ac}}{{(8a + 1)(8c + 1)}} + \frac{{ab}}{{(8a + 1)(8b + 1)}}$ ની કિમત મેળવો
$\sin ^2 x+\left(2+2 x-x^2\right) \sin x-3(x-1)^2=0,-\pi \leq x \leq \pi$ ના ઉકેલો ની સંખ્યા ............ છે.