સમીકરણ $\mathrm{e}^{4 \mathrm{x}}+\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{\mathrm{x}}+1=0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.
$4$
$2$
$3$
$1$
જો $\alpha$ અને $\beta$ એ સમીકરણ $x^{2}+(3)^{1 / 4} x+3^{1 / 2}=0$ નાં ભિન્ન બીજ હોય તો $\alpha^{96}\left(\alpha^{12}-\right.1) +\beta^{96}\left(\beta^{12}-1\right)$ ની કિમંત મેળવો.
જો $\alpha ,\beta$ એ સમીકરણ $x^2 -ax + b = 0$ ના ઉકેલો હોય અને $\alpha^n + \beta^n = V_n$, હોય તો
જો દ્રીઘાત સમીકરણ ${x^2} + \left( {2 - \tan \theta } \right)x - \left( {1 + \tan \theta } \right) = 0$ ને $2$ પૂર્ણાક બીજો હોય તો $\theta $ ની શક્ય એવી $(0, 2\pi )$ માં બધી કિમતોનો સરવાળો $k\pi $, થાય તો $k$ ની કિમત મેળવો
સમીકરણ $ln(lnx)$ = $log_xe$ ના કેટલા ઉકેલો મળે?