જો $ax^3 + bx^2 + cx + d$ ના એક અવયવ $x^2 + x + 1$ હોય, તો $ax^3 + bx^2 + cx + d = 0$ નું વાસ્તવિક બીજ કયું હોય ?
$ - \frac{d}{a}$
$d/a$
$a/d$
આપેલ પૈકી એકપણ નહિ.
સમીકરણ $|x - 2|^2 + |x - 2| - 6 = 0$ નાં બીજ ......છે.
સમીકરણ $x|x+5|+2|x+7|-2=0$ ના વાસ્તવિક ઉકેલોની સંખ્યા ............ છે.
સમીકરણ$x^{5}\left(x^{3}-x^{2}-x+1\right)+x\left(3 x^{3}-4 x^{2}-2 x+4\right)-1=0$ ના વાસ્તવીક ભિન્ન બીજોની સંખ્યા મેળવો.
સમીકરણ $\left| {\sqrt x - 2} \right| + \sqrt x \left( {\sqrt x - 4} \right) + 2 = 0\left( {x > 0} \right)$ ના ઉકેલોનો સરવાળો ..... થાય
જો $\alpha ,\beta,\gamma$ એ સમીકરણ $x^3 + 2x -5 = 0$ ના ઉકેલો હોય અને સમીકરણ $x^3 + bx^2 + cx + d = 0$ ના ઉકેલો $2 \alpha + 1, 2 \beta + 1, 2 \gamma + 1$ હોય તો $|b + c + d|$ ની કિમત મેળવો (જ્યાં $b,c,d$ નો સરવાળો અવિભાજય સંખ્યા છે )