ધારોકે $p$ અને $q$ બે એવી વાસ્તવિક સંખ્યાઓ છે કે જેથી $p+q=3$ અને $p^{4}+q^{4}=369$. તો $\left(\frac{1}{p}+\frac{1}{q}\right)^{-2}=$

  • [JEE MAIN 2022]
  • A

    $2$

  • B

    $1$

  • C

    $4$

  • D

    $5$

Similar Questions

જો $\alpha $ અને $\beta $ દ્રીઘાત સમીકરણ  $x^2 + x\, sin\,\theta  -2sin\,\theta  = 0$, $\theta  \in \left( {0,\frac{\pi }{2}} \right)$  ના ઉકેલો હોય તો $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha  - \beta } \right)}^{24}}}}$ ની કિમત મેળવો. 

  • [JEE MAIN 2019]

જો $S$ એ બધા $\alpha  \in  R$ નો ગણ છે કે જેથી $cos\,2 x + \alpha  \,sin\, x = 2\alpha  -7$ ને ઉકેલગણ મળે તો $S$ = 

  • [JEE MAIN 2019]

જો $x$ કોઇ વાસ્તવિક સંખ્યા હોય તો $\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}$ ની મહતમ કિંમત . . . હોય . .

  • [AIEEE 2006]

જો સમીકરણ $x^4 - 4x^3 + ax^2 + bx + 1 = 0$ ને ચાર વાસ્તવિક બીજ $\alpha,\beta,\gamma,\delta$ હોય તો, $a$ અને $b$ ની કિંમત ......હશે.

જો $a,b,c$ એ ભિન્ન વાસ્તવિક સંખ્યાઓ છે અને $a^3 + b^3 + c^3 = 3abc$ હોય તો સમીકરણ $ax^2 + bx + c = 0$ ના બે ઉકેલો માંથી એક ઉકેલ ........ છે