$x^2 - 6x - 2 = 0$ ના બીજ $\alpha$ અને $\beta$ લો. જ્યાં $\alpha$ > $\beta$ જો બધા $n \geq 1$ માટે $a_n = \alpha^n - \beta^n$ હોય, તો $\frac{{{a_{10}} - 2{a_8}}}{{2{a_9}}}$ નું મૂલ્ય કેટલું થાય ?
$1$
$2$
$3$
$4$
જો $P(x) = x^3 - ax^2 + bx + c$ જ્યાં $a, b, c \in R$ ને પૂર્ણાક ઉકેલો મળે કે જેથી $P(6) = 3$, થાય તો $' a '$ ની કિમત ......... શક્ય નથી
ધારોકે $\alpha, \beta$ એ સમીકરણ $x^2-\left(t^2-5 t+6\right) x+1=0, t \in \mathbb{R}$ નાં ભિન્ન બીજ છે અને $a_n=\alpha^n+\beta^n$. તો $\frac{a_{2023}+a_{2025}}{a_{2024}}$ નું ન્યૂનતમ મૂલ્ય .............છે.
સમીકરણ $\sqrt {3 {x^2} + x + 5} = x - 3$ માટે $x$ ના વાસ્તવિક ઉકેલોનો સંખ્યા ....... છે ?
જો $[.]$ એ ગુરુતમ મહતમ પૂર્ણાક વિધેય હોય તો સમિકરણ $[ x ]^{2}+2[ x +2]-7=0$ ના
કોઇ એક ધન પૂર્ણાંક $n$ માટે ,જો દ્વિઘાત સમીકરણ $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ ને બે ક્રમિક પૂર્ણાંક ઉકેલો હોય તો ,$n$ ની કિંમત મેળવો.