સમીકરણ $(\frac{3}{2})^x = -x^2 + 5x-10$ ના વાસ્તવિક ઉકેલોની સંખ્યા .......... છે
$1$
$2$
$4$
$0$
જો $x$ અને $y$ વાસ્તવિક હોય, તો નીચેનામાંથી કયું સાચું હોય ?
ઘન વાસ્તવિક સંખ્યા $x$ છે, જ્યારે તેનો વ્યસ્ત ઉમેરવામાં આવે ત્યારે તે સરવાળાનું મહત્તમ મૂલ્ય આપે છે, તો $x .....$
અહી $\alpha, \beta(\alpha>\beta)$ એ દ્રીઘાત સમીકરણ $x ^{2}- x -4=0$ ના બીજ છે. જો $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$ તો $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ ની કિમંત $......$ થાય.
જો ${\rm{x}}$ બરાબર શું થાય, તો $\frac{{8{x^2}\, + \,16x\, - \,51}}{{(2x - \,3)\,(x\, + \,4)}}\, > \,3\,\, = \,\,\,......$
જો $f(x)={{x}^{2}}-x+k-2,k\in R$ હોય તો $k$ ની કિમતોનો ગણ મેળવો કે જેથી $y=\left| f\left( \left| x \right| \right) \right|$ ને બિન્ન $5$ બિંદુઓ પર વિકલનીય ન થાય