સમીકરણ $x^2 + 4y^2 + 3z^2 - 2x - 12y - 6z + 14$ નું લઘુત્તમ મૂલ્ય કેટલું થાય ?
$0$
$1$
લઘુત્તમ મૂલ્ય નથી.
આપેલ પૈકી એકપણ નહિ.
સમીકરણ ${t^2}{x^2} + |x| + \,9 = 0$ ના બધાજ બીજોનો ગુણાકાર . . . . .
જો $\alpha$ અને $\beta$ એ સમીકરણ $x^3 + 3x^2 -1 = 0$ ના બે ભિન્ન બીજો હોય તો ક્યાં સમીકરણનો ઉકેલ $(\alpha \beta )$ થાય ?
એક ત્રિઘાત સમીકરણમાં $x^2$ નો સહગુણક શૂન્ય અને બાકીના સહગુણક વાસ્તવિક અને એક ઉકેલ $\alpha = 3 + 4\, i$ તથા બાકીના ઉકેલો $\beta$ અને $\gamma$ હોય તો $\alpha \beta \gamma$ ની કિમત મેળવો
જો $a$ ,$b$, $c$ , $d$ , $e$ એ પાંચ સંખ્યાઓ સમીકરણ સંહિતાઓ ને સંતોષે
$2a + b + c + d + e = 6$
$a + 2b + c + d + e = 12$
$a + b + 2c + d + e = 24$
$a + b + c + 2d + e = 48$
$a + b + c + d + 2e = 96$ ,
તો $|c|$ ની કિમત મેળવો
ધારો કે $\alpha, \beta$ એ $x^2+\sqrt{2} x-8=0$ નાં બીજ છે. જો $\mathrm{U}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$, તો $\frac{\mathrm{U}_{10}+\sqrt{2} \mathrm{U}_9}{2 \mathrm{U}_8}=$...........