ચકાસો કે નીચેની સંભાવનાઓ $P(A)$ અને $P(B)$ સુસંગત રીતે વ્યાખ્યાયિત છે.
$P ( A )=0.5$, $ P ( B )=0.4$, $P ( A \cap B )=0.8$
$P ( A )=0.5$, $P ( B )=0.4$, $P (A \cup B)=0.8$
It is known that if $E$ and $F$ are two events such that $E \subset F,$ then $P ( E ) \leq P ( F )$
Here, it is seen that $P (A \cup B)> P ( A )$ and $P (A \cup B)> P ( B )$
Hence, $P(A)$ and $P(B)$ are consistently defined.
પેટી $A$ માં છ લાલ અને ચાર કાળા દડા છે અને પેટી $B$ માં ચાર લાલ અને છ કાળા દડા છે.જો એક દડો પેટી $A$ માંથી યાદ્રચ્છિક રીતે પસંદ કરી ને પેટી $B$ માં મુકવામાં આવે છે.અને પછી એક દડો પેટી $B$ માંથી યાદ્રચ્છિક રીતે પસંદ કરી ને પેટી $A$ માં મુકવામાં આવે છે.હવે જો એક દડો પેટી $A$ માંથી યાદ્રચ્છિક રીતે પસંદ કરતાં તે લાલ હેાય તેની સંભાવના મેળવો.
જો $A$ અને $B$ બે નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે $A$ અને $B$ માંથી ઓછામાં ઓછી એક ઘટના ઉદ્ભવવાની સંભાવના $1 -P(A') P(B')$ છે.
ત્રણ સિક્કાઓને એકસાથે ઉછાળવામાં આવે છે. ધારો કે ઘટના $E$ 'ત્રણ છાપ અથવા ત્રણ કાંટા', ઘટના $F$ 'ઓછામાં ઓછી બે છાપ' અને ઘટના $G$ 'વધુમાં વધુ બે છાપ.' મળે તેમ દર્શાવે છે. જોડ $(E, F), (E, G)$ અને $(F, G)$ પૈકી કઈ ઘટનાઓની જોડ નિરપેક્ષ ઘટનાઓની જોડ છે ? કઈ ઘટનાઓની જોડ અવલંબી છે ?
કોઇ બે નિરપેક્ષ ઘટનાઓ ${E_1}$ અને ${E_2},$ માટે $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ એ
ત્રણ ઘટનાઓ $A,B $ અને $C$ માટે $P(A $ અથવા $B$ માંથી ફકત એક બને) $ = P(B$ અથવા $C$ માંથી ફકત એક બને $)= P( A$ અથવા $C$ માંથી ફકત એક બને) =$\;\frac{1}{4}$ તથા $P$ (તમામ ત્રણેય ઘટનાઓ એક સાથે બને) = $\frac{1}{{16}}$ તો ઓછામાં ઓછી એક ઘટના બને તેની સંભાવના . . . છે. .