બે થેલી $A$ અને $B$ અનુક્રમે $2$ સફેદ, $3$ કાળા, $4$ લાલ અને $3$ સફેદ, $4$ કાળા, $5$ લાલ દડા ધરાવે છે. જો એક દડો $A$ થેલીમાંથી ઉપાડી $B$ થેલીમાં મૂકવામાં આવે છે. હવે જો દડો $B$ થેલીમાંથી ઉપાડવામાં આવે, તો આપેલ માહિતીના આધારે $B$ થેલીમાંથી સફેદ દડો ઉપાડવાની સંભાવના કેટલી થાય ?
$49/117$
$29/117$
$1/3$
$1/4$
આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ અથવા $B)$ શોધો.
જો $A$ અને $B$ નિરપેક્ષ ઘટનાઓ હોય અને $P(A)=\frac{3}{5}$ અને$P(B)=\frac{1}{5}$ હોય, તો $P(A \cap B)$ શોધો.
ચકાસો કે નીચેની સંભાવનાઓ $P(A)$ અને $P(B)$ સુસંગત રીતે વ્યાખ્યાયિત છે.
$P ( A )=0.5$, $ P ( B )=0.4$, $P ( A \cap B )=0.8$
ત્રણ વ્યક્તિ $P, Q$ અને $R$ એ સ્વતંત્ર રીતે એક નિશાન તકે છે . જો તેઓ નિશાન તાકી શકે તેની સંભાવના અનુક્રમે $\frac{3}{4},\frac{1}{2}$ અને $\frac{5}{8}$ હોય તો $P$ અથવા $Q$ નિશાન તાકી શકે પરંતુ $R$ તાકી ન શકે તેની સંભાવના મેળવો.
નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |