એક પાસાઓ એ રીતે છે કે જેથી દરેક અયુગ્મ સંખ્યા આવવાની સંભાવના એ યુગ્મ આવવાની સંભાવના કરતા બમણી છે જો ઘટના $E$ એ એકવાર ફેંકવાથી મળતી સંખ્યા $4$ કે તેનાથી વધારે આવે તેની સંભાવના $P(E)$ મેળવો.
$\frac{4}{9}$
$\frac{2}{3}$
$\frac{1}{3}$
$\frac{1}{2}$
ધરોકે $A, B,$ અને $C$ એ ઘટના ઓ છે કે જેથી $ P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$ તો $P\,(A + B) = .....$
ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P( E-$ નહિ અથવા $F-$ નહિ) $= 0.25$, ચકાસો કે $E$ અને $F$ પરસ્પર નિવારક છે કે નહિ?
જો $A$ અને $B$ બે ઘટના છે કે જેથી $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ અને $P(\bar A) = \frac{1}{4},$ કે જ્યાં $\bar A$ એ ઘટના $A$ ની પૂરક ઘટના છે તો ઘટનાઓ $A$ અને $B$ એ . . . થાય .
જો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે ઘટનાઓ $E$ અને $F'$ પણ નિરપેક્ષ છે.
નારંગીના ખોખામાંથી યાચ્છિક રીતે પુરવણી વગર ત્રણ નારંગી પસંદ કરીને તે ખોખાને તપાસવામાં આવે છે. જો તમામ ત્રણ નારંગીઓ સારી હોય, તો ખોખાના વેચાણ માટે સ્વીકાર કરાય છે, અન્યથા તેનો અસ્વીકાર કરવામાં આવે છે. જો ખોખામાં સમાવિષ્ટ $15$ નારંગી પૈકી $12$ સારી અને $3$ ખરાબ હોય, તો તેને વેચાણ માટે મંજૂરી મળે તેની સંભાવના શોધો.