$A$ અને $B$ બે ઘટનાઓ એવા પ્રકારની છે કે $P(A) = 0.54, P(B) = 0.69$ અને$P(A \cap B)=0.35$  $P \left( B \cap A ^{\prime}\right)$ શોધો.  

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P ( A )=0.54$,  $P ( B )=0.69$,  $P (A \cap B)=0.35$

We know that

$n\left( B \cap A ^{\prime}\right)=n( B )-n( A \cap B )$

$\Rightarrow \frac{n\left( B \cap A ^{\prime}\right)}{n( S )}$ $=\frac{n( B )}{n( S )}-\frac{n( A \cap B )}{n( S )}$

$\therefore P \left( B \cap A ^{\prime}\right)= P ( B )- P ( A \cap B )$

$\therefore P \left( B \cap A ^{\prime}\right)=0.69-0.35=0.34$

Similar Questions

એક થેલામાં $4$ લાલ અને $3$ વાદળી દડા છે.  બે દડા વારાફરતી  લેવામાં આવે છે. જો બીજો દડો લઈએ તે પહેલા, પહેલો દડો મૂકવામાં આવે તો પહેલા બે દડા લાલ અને બીજા બે દડા વાદળી હોવાની સંભાવના કેટલી થાય ?

કોઇ બે નિરપેક્ષ ઘટનાઓ ${E_1}$ અને ${E_2},$ માટે $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ એ 

  • [IIT 1991]

ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ અને $P(E$ અને $F )=\frac{1}{8},$ તો $P(E$ નહિ $F$ નહિ) શોધો. 

ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ અને $P(E$ અને $F )=\frac{1}{8},$ તો $P(E$ અથવા $F$) શોધો. 

બે ઘટનાઓ $A$ અને $B$ ની સંભાવનાઓ અનુક્રમે $0.25$ અને $0.50$ છે. $A$ અને $B$ બંને એક સાથે થવાની સંભાવના $0.14$ છે. તો $A$ અને $B$ માંથી એક પણ ઘટના ન બને તેની સંભાવના કેટલી?