પેટી $A$ માં છ લાલ અને ચાર કાળા દડા છે અને પેટી $B$ માં ચાર લાલ અને છ કાળા દડા છે.જો એક દડો પેટી $A$ માંથી યાદ્રચ્છિક રીતે પસંદ કરી ને પેટી $B$ માં મુકવામાં આવે છે.અને પછી એક દડો પેટી $B$ માંથી યાદ્રચ્છિક રીતે પસંદ કરી ને પેટી $A$ માં મુકવામાં આવે છે.હવે જો એક દડો પેટી $A$ માંથી યાદ્રચ્છિક રીતે પસંદ કરતાં તે લાલ હેાય તેની સંભાવના મેળવો.

  • [IIT 1988]
  • A

    $\frac{{32}}{{55}}$

  • B

    $\frac{{21}}{{55}}$

  • C

    $\frac{{19}}{{55}}$

  • D

    એકપણ નહિ.

Similar Questions

નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો : 

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$0.35$  ........... $0.25$  $0.6$

એક થેલામાં $4$ લાલ અને $3$ વાદળી દડા છે.  બે દડા વારાફરતી  લેવામાં આવે છે. જો બીજો દડો લઈએ તે પહેલા, પહેલો દડો મૂકવામાં આવે તો પહેલા બે દડા લાલ અને બીજા બે દડા વાદળી હોવાની સંભાવના કેટલી થાય ?

જો $A$ અને $B$ એ સ્વતંત્ર ઘટના છે કે જેથી $\mathrm{P}(\mathrm{A})=\mathrm{p}, \mathrm{P}(\mathrm{B})=2 \mathrm{p} $ થાય છે. તો $\mathrm{p}$ ની મહતમ કિમંત મેળવો કે જેથી $\mathrm{P}$ ($\mathrm{A}, \mathrm{B}$ પૈકી એક્જ ઘટના ઉદભવે $)=\frac{5}{9}$ .

  • [JEE MAIN 2021]

ઘટના $A$ અને $B$ છે. ઓછામાં એક ઘટના બને તેની સંભાવના $0.6,$ બન્ને ઘટના બને તેની સંભાવના $0.2$ છે. તો $P(A) + P(B)= …....$

ધારો કે $A, B, C $ જોડયુક્ત રીતે નિરપેક્ષ ઘટના હોય, જ્યાં  $P(C)>0$ અને 

$P(A \cap B \cap C)=0 $ હોય, તો $P(A' \cap B'|C) $ બરાબર શું થાય ?