વિધાન $- 1 : $ પ્રથમ $n$ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{4}$છે.
વિધાન $ - 2$ : પ્રથમ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $\frac{{n(n\,\, + \,\,1)}}{2}$અને પ્રથમ $n$ પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(n\, + \,\,1)\,(2n\, + \,\,1)}}{6}$ છે.
વિધાન $ - 1 $ સાચું છે. વિધાન $- 2 $ ખોટું છે.
વિધાન $- 1 $ ખોટું છે. વિધાન $- 2$ સાચું છે.
વિધાન $- 1 $ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $ - 2 $ એ સાચું છે, વિધાન $- 1$ માટે સાચી સમજૂતી છે.
વિધાન $- 1 $ સાચું છે, વિધાન $- 2 $ સાચું છે. વિધાન $- 2$ એ વિધાન $- 1$ માટે સાચી સમજૂતી નથી.
વિધાન $1$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વિચરણ $\frac{{{n^2} - 1}}{3}$ થાય
વિધાન $2$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો સરવાળો $n^2$ અને પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વર્ગોનો સરવાળો $\frac{{n\left( {4{n^2} + 1} \right)}}{3}$ થાય
$8$ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $10$ અને $13.5$ છે જો તેમાંથી $6$ અવલોકનો $5,7,10,12,14,15,$ હોય તો બાકી રહેલા બીજા બે અવલોકનોનો ધન તફાવત ........... થાય
જો વિતરણનું દરેક અવલોકન જેનું પ્રમાણિત વિચલન $\sigma$, એ $\lambda$, જેટલું વધતું હોય તો નવા અવલોકનોનું વિચરણ શોધો.
આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.
વર્ગ | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
આવૃત્તિ | $5$ | $8$ | $15$ | $16$ | $6$ |
$x$ ના $15$ અવલોકનોના પ્રયોગમાં $\sum x^2 = 2830,\, \sum x = 170 $આ પરિણામ મળે છે. એક અવલોકન $20$ ખોટું મળે છે અને તેના સ્થાને સાચું અવલોકન $30$ મૂકવામાં આવે તો સાચું વિરણ કેટલું થાય ?