જો $100$ અવલોકનનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $40$ અને $10$ છે આ અવલોકનોમાં બે અવલોકનો $3$ અને $27$ ને બદલે $30$ અને $70$ લેવાય ગયું તો સાચું પ્રમાણિત વિચલન મેળવો
Given, $n=100, \bar{x}=40$ and $\sigma=10$
$\therefore \quad \frac{\Sigma x_{i}}{n}=40$
$\Rightarrow \quad \frac{\Sigma x_{i}}{100}=40$
$\Rightarrow \quad \Sigma x_{i}=4000$
Now, Corrected $\Sigma x_{i}=4000-30-70+3+27=3930$
Corrected mean $=\frac{2930}{100}=39.3$
Now, $\sigma^{2}=\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}=\frac{\Sigma x_{i}^{2}}{n}-(40)^{2}$
$\Rightarrow \quad 100=\frac{\Sigma x_{i}^{2}}{100}-1600$
$\Rightarrow \quad \Sigma x_{i}^{2}=170000$
Now, $\quad$ Corrected $\Sigma x_{i}^{2}=170000-(30)^{2}-(70)^{2}+3^{2}+(27)^{2}=164938$
Corrected $\sigma=\sqrt{\frac{164938}{100}-(39.3)^{2}}=\sqrt{1649.38-1544.49}=\sqrt{104.9}$
$=10.24$
સંખ્યાઓ $a, b, 8, 5, 10 $ નો મધ્યક $6$ અને વિચરણ $6.80 $ હોય તો નીચે આપેલ પૈકી કઇ એક $a $ અને $b $ માટે શક્ય કિંમત છે ?
જે શ્રેણીનું પ્રથમ પદ $a$ અને સામાન્ય તફાવત $d$ હોય તેવી સમાંતર શ્રેણીના પ્રથમ $n$ પદો માટે મધ્યક અને પ્રમાણિત વિચલન મેળવો
આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
જો $x_i $ નું પ્રમાણિત વિચલન $10$ હોય તો ($50 + 5x_i$)નું વિચરણ કેટલું હશે ?
અહી $\mathrm{X}$ એ વિતરણનું યાર્દચ્છિક ચલ છે.
$\mathrm{x}$ | $-2$ | $-1$ | $3$ | $4$ | $6$ |
$\mathrm{P}(\mathrm{X}=\mathrm{x})$ | $\frac{1}{5}$ | $\mathrm{a}$ | $\frac{1}{3}$ | $\frac{1}{5}$ | $\mathrm{~b}$ |
જો મધ્યક $X$ એ $2.3$ અને $X$ નું વિચરણ $\sigma^{2}$ હોય તો $100 \sigma^{2}$ ની કિમંત મેળવો.